Featured Research

from universities, journals, and other organizations

How plants control the formation of wood cells

Date:
May 31, 2011
Source:
Helsingin yliopisto (University of Helsinki)
Summary:
An international group led by researchers in Finland has discovered the genetic process that controls the development of wood cells in the roots of plants. Xylem (wood cells) is the vascular tissue that transports water and nutrients upward from the root, also contributing to the formation of the woody element in the stem. The work presents a potential method for engineering plants to produce more wood.

An international research group headed by Professor and Research Director Yrj๖ Helariutta has discovered the genetic process that controls the development of wood cells in the roots of plants. Xylem (wood cells) is the vascular tissue that transports water and nutrients upward from the root, also contributing to the formation of the woody element in the stem. The work, published in the online version of the journal Current Biology, presents a potential method for engineering plants to produce more wood.

All multicellular organisms start life as a single cell. This cell begins to divide, and the new cells need to take on new identities. Understanding the genetic messages that control these processes helps researchers to direct the development of plants. Plant cells can be engineered to produce more or less of a certain cell or tissue, for example. More durable and faster-growing plants are particularly important in this era of climate change and energy considerations. The goal is to direct the development of plants for practical purposes.

The research carried out by Professor Helariutta's team will help to direct future crop and forestry improvements. According to researcher Anthony Bishopp, the results enhance our understanding of how plants develop.

"The formation of water-transporting tissues has been paramount to plants' colonisation of the land. We are now presenting a mechanism through which the identity of water-conducting wood cells can be assigned," says Bishopp.

The results show that the interaction between two hormones controls the extent to which wood forms in the root. In addition to altering the movement of these hormones, the researchers altered the plants' ability to perceive them. This resulted in plants with deficient or excessive wood tissue. Wood cells are rich in cellulose, which can be harnessed to produce biofuels. The forestry industry could also benefit from trees with wood properties that have been modified to meet the needs of process technology.

The research was carried out using a small weed, the model plant Arabidopsis thaliana. The group has plans to apply the results to commercially relevant species, such as forest trees and rice.

In addition to the formation of wood tissue, the research sheds light on the development of plants in general. The development processes fascinate Bishopp:

"A fertilised egg cell contains all of the genetic information that the whole organism needs. As this organism grows, subsequent cells take on new identities and new structures appear. From a developmental biologist's perspective, it doesn't matter if this organism is a person or a plant."

The research was carried out as part of a European Research Network aimed at bringing together research institutions to stimulate economic growth, competitiveness and sustainability. The network initially included partners from Finland, Belgium and the United Kingdom but was expanded to include the Netherlands and Japan. This concerted research effort was led by Professor Helariutta (Finland). Anthony Bishopp (UK) and Hanna Help (Finland) carried out most of the work.


Story Source:

The above story is based on materials provided by Helsingin yliopisto (University of Helsinki). Note: Materials may be edited for content and length.


Journal Reference:

  1. Anthony Bishopp, Satu Lehesranta, Anne Vat้n, Hanna Help, Sedeer El-Showk, Ben Scheres, Kerttuli Helariutta, Ari Pekka Mไh๖nen, Hitoshi Sakakibara, and Ykไ Helariutta. Phloem-Transported Cytokinin Regulates Polar Auxin Transport and Maintains Vascular Pattern in the Root Meristem. Current Biology, 2011; DOI: 10.1016/j.cub.2011.04.049

Cite This Page:

Helsingin yliopisto (University of Helsinki). "How plants control the formation of wood cells." ScienceDaily. ScienceDaily, 31 May 2011. <www.sciencedaily.com/releases/2011/05/110530105159.htm>.
Helsingin yliopisto (University of Helsinki). (2011, May 31). How plants control the formation of wood cells. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/05/110530105159.htm
Helsingin yliopisto (University of Helsinki). "How plants control the formation of wood cells." ScienceDaily. www.sciencedaily.com/releases/2011/05/110530105159.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) — Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins