Featured Research

from universities, journals, and other organizations

Similarities cause protein misfolding

Date:
June 4, 2011
Source:
University of Zurich
Summary:
A large number of illnesses stem from misfolded proteins, molecules composed of amino acids. Researchers have now studied protein misfolding using a special spectroscopic technique. Misfolding is more frequent if the sequence of the amino acids in the neighboring protein domains is very similar.

Illustration of the correctly folded (a) and the misfolded (b) structures for a multidomain protein studied using single-molecule spectroscopy. The positions in the protein marked labelled with dye probes are shown as orange balls. The structure in (b) arises from the combination of spectroscopic distance measurements in the molecule and simulations.
Credit: Image courtesy of University of Zurich

A large number of illnesses stem from misfolded proteins, molecules composed of amino acids. Researchers at the University of Zurich have now studied protein misfolding using a special spectroscopic technique. Misfolding, as they report in Nature, is more frequent if the sequence of the amino acids in the neighboring protein domains is very similar.

Proteins are the main molecular machines in our bodies. They perform a wide range of functions, from digesting and processing nutrients, converting energy and aiding cell structure to transmitting signals in cells and the whole body. In order to perform these highly specific functions, proteins have to adopt a well-defined, three-dimensional structure. Remarkably, in most cases they find this structure unaided once they have been formed out of their individual building blocks, amino acids, as a long chain molecule in the cell.

However, the process of protein folding can also go wrong, which means the proteins affected are no longer able to perform their function. In some cases, this can even have much more serious consequences if thesemisfolded proteins clump and trigger neurodegenerative diseases such as Alzheimer's or Parkinson's disease.

In the course of evolution, a crucial factor in the development of proteins has thus been to avoid such "misfolding processes." However, this is no easy task since the same molecular interactions that stabilize the correct structure of the individual proteins can also bring about interactions between protein molecules, causing them to misfold.

Using a special spectroscopic method called single-molecule fluorescence, researchers from the Universities of Zurich and Cambridge have now studied the circumstances under which misfolding occurs. The team headed by Prof. Benjamin Schuler from the University of Zurich studied sections, or "domains," of the largest protein in our bodies, titin, which helps the stability and elasticity of the muscle fibers. It is assumed that individual titindomains can unfold while the muscle is heavily exerted to avoid damaging the muscle tissue. When the muscle relaxes again, however, there is a danger that these unfolded domains might fold incorrectly. There is also a similar risk for other multidomain proteins.

For their study, the researchers attached small dye molecules as probes in the protein. "Using our laser-spectroscopic method we were able to determine distances on a molecular scale, i.e. down to a few millionths of a millimeter, through the energy transfer between the probes," explains Prof. Schuler. This enabled the structures of correctly and misfolded proteins to be distinguished and thus the proportion of misfolding determined.

"The study of different titin domains in our experiments revealed that the probability of misfolding increases if neighboring domains are very similar in the sequence of their amino acids," says Prof. Schuler. This is apparently the reason why neighboring domains in proteins have a limited degree of similarity. "This seems to be a key evolutionary strategy to avoid protein misfolding and thus guarantee their maximum functionality," says Schuler.


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Madeleine B. Borgia, Alessandro Borgia, Robert B. Best, Annette Steward, Daniel Nettels, Bengt Wunderlich, Benjamin Schuler, Jane Clarke. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature, 2011; DOI: 10.1038/nature10099

Cite This Page:

University of Zurich. "Similarities cause protein misfolding." ScienceDaily. ScienceDaily, 4 June 2011. <www.sciencedaily.com/releases/2011/05/110531084627.htm>.
University of Zurich. (2011, June 4). Similarities cause protein misfolding. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/05/110531084627.htm
University of Zurich. "Similarities cause protein misfolding." ScienceDaily. www.sciencedaily.com/releases/2011/05/110531084627.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins