Featured Research

from universities, journals, and other organizations

From seawater to freshwater with a nanotechnology filter

Date:
June 20, 2011
Source:
Institute of Physics
Summary:
In a new article, researchers describe the role that carbon nanotubes could play in the desalination of water, providing a possible solution to the problem of the world's ever-growing population demanding more and more fresh drinking water.

In the June 2011 issue of Physics World, Jason Reese, Weir Professor of Thermodynamics and Fluid Mechanics at the University of Strathclyde, describes the role that carbon nanotubes (CNTs) could play in the desalination of water, providing a possible solution to the problem of the world's ever-growing population demanding more and more fresh drinking water.

Global population projections suggest that worldwide demand for water will increase by a third before 2030.

But with more than a billion people already experiencing drinking-water shortages, and with a potential 3-6 oC increase in temperature and subsequent redistribution of rainfall patterns, things are likely to get even worse.

CNTs -- essentially sheets of one-atom thick carbon rolled into cylinders -- have been investigated by Reese and his research group, using computer simulations, as a new way of addressing this challenge and transforming abundant seawater into pure, clean drinking water.

Their technique is based on the process of osmosis -- the natural movement of water from a region with low solute concentration across a permeable membrane to a region with high concentration. But just as with most existing water-desalination plants, Reese's technique actually uses the opposite process of "reverse osmosis" whereby water moves in the opposite direction, leaving the salty water clean.

One can imagine a large tank of water, separated into two sections by a permeable membrane, with one half containing fresh water and the other half containing seawater. The natural movement of water would move from the fresh water side to the seawater side to try and dilute the seawater and neutralize the concentrations.

But in reverse osmosis a large amount of pressure is applied to the seawater side of the tank, which reverses the process, making water move into the fresh-water side and leave the salt behind.

Although this process can remove the necessary salt and mineral content from the water, it is incredibly inefficient and producing the high pressures is expensive.

Reese has, however, shown that CNTs can realistically expect to have water permeability 20 times that of modern commercial reverse-osmosis membranes, greatly reducing the cost and energy required for desalination. Additionally, CNTs are highly efficient at repelling salt ions, more so because specific chemical groups can be attached to them to create a specific "gatekeeper" function.

As Reese writes, "The holy grail of reverse-osmosis desalination is combining high water-transport rates with efficient salt-ion rejection. While many questions still remain, the exciting potential of membranes of nanotubes to transform desalination and water-purification processes is clear, and is a very real and socially progressive use of nanotechnology."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

Institute of Physics. "From seawater to freshwater with a nanotechnology filter." ScienceDaily. ScienceDaily, 20 June 2011. <www.sciencedaily.com/releases/2011/05/110531201217.htm>.
Institute of Physics. (2011, June 20). From seawater to freshwater with a nanotechnology filter. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2011/05/110531201217.htm
Institute of Physics. "From seawater to freshwater with a nanotechnology filter." ScienceDaily. www.sciencedaily.com/releases/2011/05/110531201217.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niño Event This Year

Scientists Warn Of Likely El Niño Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins