Featured Research

from universities, journals, and other organizations

Protein folding made easy

Date:
June 8, 2011
Source:
McGill University
Summary:
Computational methods of modeling protein folding have existed for a couple of decades. But they required hundreds of thousands of CPU hours to compute the folding dynamics of 40 amino acids proteins. Now, researchers have developed algorithms able to predict correctly in 10 minutes on a single laptop, a coarse-grained representation of the folding pathways of a protein with 60 amino acids.

Protein folding is the continual and universal process whereby the long, coiled strings of amino acids that make up proteins in all living things fold into more complex three-dimensional structures. By understanding how proteins fold, and what structures they are likely to assume in their final form, researchers are then able to move closer to predicting their function.
Credit: Image courtesy of McGill University

Protein folding is one of the central questions in biochemistry. Protein folding is the continual and universal process whereby the long, coiled strings of amino acids that make up proteins in all living things fold into more complex three-dimensional structures. By understanding how proteins fold, and what structures they are likely to assume in their final form, researchers are then able to move closer to predicting their function.

Related Articles


This is important because incorrectly folded proteins in humans result in such devastating diseases as Alzheimer's, Parkinson's, Huntington's, emphysema and cystic fibrosis. Developing better modelling techniques for protein folding is crucial to creating more effective pharmaceutical treatments for these and other diseases.

Computational methods of modelling protein folding have existed for a couple of decades. But what McGill researcher Jérôme Waldispühl of the McGill Centre for Bioinformatics has done, working with collaborators from MIT, is to develop algorithms that can work from a laptop computer to examine a protein's fundamental chemical properties and then scan a number of possible protein shapes before predicting the final form that the protein is likely to take.

The results have been impressive. Whereas classical techniques for predicting protein folding pathways required hundreds of thousands of CPU hours to compute the folding dynamics of 40 amino acids proteins, the program tFolder implemented by Solomon Shenker -- a former McGill undergraduate student now at Cornell -- has been able to predict correctly in 10 minutes on a single laptop, a coarse-grained representation of the folding pathways of a protein with 60 amino acids.

Waldispühl and his students continue to work on their algorithm to improve its success rate at predicting protein folding with broader categories of proteins including some that are important in DNA-binding. The research was recently presented at the 15th Annual International Conference in Research in Computational Molecular Biology (RECOMB 2011).

The research was funded by McGill and the NSERC discovery grant program.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Cite This Page:

McGill University. "Protein folding made easy." ScienceDaily. ScienceDaily, 8 June 2011. <www.sciencedaily.com/releases/2011/06/110607121135.htm>.
McGill University. (2011, June 8). Protein folding made easy. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/06/110607121135.htm
McGill University. "Protein folding made easy." ScienceDaily. www.sciencedaily.com/releases/2011/06/110607121135.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins