Featured Research

from universities, journals, and other organizations

Malaria vaccination strategy provides model for superior protection

Date:
June 15, 2011
Source:
Cell Press
Summary:
A new study uncovers a powerful strategy for eliciting an immune response that can combat the parasite during multiple stages of its complex life cycle and describes what may be the most effective next-generation vaccination approach for malaria.

Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 malaria-related deaths annually. As a result, there is an urgent need for vaccines to combat infection. Now, a new study uncovers a powerful strategy for eliciting an immune response that can combat the parasite during multiple stages of its complex life cycle and describes what may be the most effective next-generation vaccination approach for malaria.

Related Articles


The research will be published online on June 15 by Cell Press in the journal Cell Host and Microbe.

When an infected mosquito bites a human, the parasite "sporozoite" stage is deposited in the skin. From there, it travels to the liver cells where it copies itself many times and matures for about a week into new forms that infect red blood cells and cause the clinical symptoms of malaria. "Halting Plasmodium infection during the clinically silent liver stage represents an attractive goal of antimalarial vaccination, but is challenging because, if not complete, some parasites can get into the blood and cause disease," explains study co-author Dr. Stefan Kappe, from the Seattle Biomedical Research Institute. "Unfortunately, the complexity of the parasite and the diverse types of protection needed against malaria are the main reason why, despite decades of effort, no fully protective vaccine is ready for licensing"

Guiding the search for a better malaria vaccine thus far has been the "gold-standard" of protection from Plasmodium: vaccination with radiation-attenuated sporozoites. Irradiating the parasites elicits extensive and random DNA damage that arrests the parasite early in the liver and provides the immune system with an opportunity to develop an immune response that can combat the native parasite. However, very high irradiated-sporozoites doses are needed to generate full liver-stage protection and there is no protection against blood stages. "In our study, we examined whether genetically attenuated parasites (GAP) generated by targeted gene deletions to stop replication late in liver-stage development were a better vaccine option," says co-author Dr. John Harty from the University of Iowa.

Using mouse malaria models, the researchers discovered that immunization with late-liver-stage-arresting GAP provided superior and long-lasting protection against liver-stage infection when compared with irradiated parasites or early-liver-stage arresting GAP. Importantly, late-liver-stage-arresting GAP also provided protection at the blood stage of infection and across different malaria parasite species, as well as by the route of immunization that can be used in humans. These findings suggest that weakening the parasite and arresting it as late in the liver as possible may have a powerful payoff, providing a large and diverse array of immune cells with optimal targets that are very effective for neutralizing the native parasite.

"Collectively, our data indicate that late-liver-stage-arresting GAP constitute a superior vaccination strategy. This underscores the potential utility of late-arresting GAP as broadly protective second-generation live-attenuated malaria vaccine candidates and a powerful model to find new parasite protein-based vaccine candidates that protect against infection in the liver and the blood," conclude Dr. Kappe and Dr. Harty.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Malaria vaccination strategy provides model for superior protection." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110615123735.htm>.
Cell Press. (2011, June 15). Malaria vaccination strategy provides model for superior protection. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/06/110615123735.htm
Cell Press. "Malaria vaccination strategy provides model for superior protection." ScienceDaily. www.sciencedaily.com/releases/2011/06/110615123735.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins