Featured Research

from universities, journals, and other organizations

The sweet growth of plant cells

Date:
June 16, 2011
Source:
Publicase Comunicação Científica
Summary:
Researchers have found that carbohydrates play a fundamental role in the root hairs of Arabidopsis thaliana and shows how cell growth is modulated in this species.

In a new study revealing key steps for controlling plant growth, researchers have shown how the assembly of components of the plant cell wall regulates growth of root hairs.

Related Articles


Glycomics is the functional study of the entire set of sugars found in a given species. To some, the term may sound like a distant cousin of more familiar names such as genomics and proteomics. Indeed, while genomics and proteomics of several species have been extensively investigated in the last years, glycomics is still an emerging field.

Now, a paper published in Science magazine by an international collaboration headed by Dr. Jose Estevez (University of Buenos Aires, Argentina) and co-authored by researchers from Argentina, Brazil, Denmark, the United States and Australia examines in depth the fundamental role that carbohydrates play in the growth of root hairs of Arabidopsis thaliana, a small flowering plant widely used as a model system in plant cell biology and development.

"The structural plasticity of carbohydrates is greater than that of amino acids but our understanding of the implications of such plasticity and how it relates to a potential biological function is still limited. This paper contributes with new insights into the fundamental role that these very dynamic compounds have in Arabidopsis thaliana" says Dr. Hugo Verli, a scientist at the Biotechnology Center of Federal University of Rio Grande do Sul (UFRGS), Brazil, and co-author of the study.

The cell wall of plants is a very rigid structure comprised largely of sugars and proteins. However, during plant growth these cells increase 200 times their original size by addition of more sugars and proteins. How does the cell wall withstand the driving forces for growth? It has been assumed that chemical changes of wall constituents and wall networks orchestrated by enzymes and cell-wall modifying genes are implicated in the process.

To investigate the issue, the collaboration group worked with the root hairs of Arabidopsis thaliana. Growing root hairs require intensive cell-wall changes to accommodate expansion at the apical end by a process known as tip growth. Apically growing cells, such as those of root hairs, are great models to study the dynamic regulation of growth. Additionally, root hairs play an important role in plant nutrition and water uptake. The authors found that O-glycosylation, a process by which carbohydrates are attached to proteins, lipids and other organic molecules, is crucial for root-hair growth in Arabidopsis thaliana.

The study shows that blockage of the O-glycosylation reaction inhibits the growth of root hairs by 50%. Additionally, when the genes expressing the enzymes responsible for the O-glycosylation reaction are missing in the cell, the plants display shorter than normal root-hair length and reduced root-hair density. On the other hand, over-expression of these same enzymes doubles the length and increases the density of root hairs.

The changes that O-glycosylated cell-wall proteins undergo during growth represent a starting point to unravel the entire biochemical pathway involved in plant growth and development. Most important, the acquired ability to modulate growth in Arabidopsis thaliana is a breakthrough that can be further applied to other species in order to increase plant biomass through the vital functions of nutrient and water uptake of plant root hairs.

The work was supported by grants from ANPCyT and CONICET (Argentina), the Danish Agency for Science Technology and Innovation, the Australian Research Council, the U.S. Department of Energy, the Energy Biosciences Institute (USA), and CNPq and CAPES (Brazil).


Story Source:

The above story is based on materials provided by Publicase Comunicação Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. Silvia M. Velasquez, Martiniano M. Ricardi, Javier Gloazzo Dorosz, Paula V. Fernandez, Alejandro D. Nadra, Laercio Pol-Fachin, Jack Egelund, Sascha Gille, Jesper Harholt, Marina Ciancia, Hugo Verli, Markus Pauly, Antony Bacic, Carl Erik Olsen, Peter Ulvskov, Bent Larsen Petersen, Chris Somerville, Norberto D. Iusem and Jose M. Estevez. O-glycosylated cell wall proteins are essential in root hair growth. Science, June 17, 2011 DOI: 10.1126/science.1206657

Cite This Page:

Publicase Comunicação Científica. "The sweet growth of plant cells." ScienceDaily. ScienceDaily, 16 June 2011. <www.sciencedaily.com/releases/2011/06/110616193629.htm>.
Publicase Comunicação Científica. (2011, June 16). The sweet growth of plant cells. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/06/110616193629.htm
Publicase Comunicação Científica. "The sweet growth of plant cells." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616193629.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins