Featured Research

from universities, journals, and other organizations

Ocean's harmful low-oxygen zones growing, are sensitive to small changes in climate

Date:
June 18, 2011
Source:
University of California - Los Angeles
Summary:
Scientists report a connection between climate fluctuations and the habitability of marine ecosystems by modeling the expansion and contraction of low-oxygen zones that are dangerous for ocean life. The team found that the size of low-oxygen ocean regions is extremely sensitive to changes in their depth caused by oscillations in climate.

Fluctuations in climate can drastically affect the habitability of marine ecosystems, according to a new study by UCLA scientists that examined the expansion and contraction of low-oxygen zones in the ocean.

The UCLA research team, led by assistant professor of atmospheric and oceanic sciences Curtis Deutsch, used a specialized computer simulation to demonstrate for the first time that the size of low-oxygen zones created by respiring bacteria is extremely sensitive to changes in depth caused by oscillations in climate. These oxygen-depleted regions, which expand or contract depending on their depth, pose a distinct threat to marine life.

"The growth of low-oxygen regions is cause for concern because of the detrimental effects on marine populations -- entire ecosystems can die off when marine life cannot escape the low-oxygen water," said Deutsch. "There are widespread areas of the ocean where marine life has had to flee or develop very peculiar adaptations to survive in low-oxygen conditions."

The study, which was published June 9 in the online edition the journal Science and will be available in an upcoming print edition, also showed that in addition to consuming oxygen, marine bacteria are causing the depletion of nitrogen, an essential nutrient necessary for the survival of most types of algae.

"We found there is a mechanism that connects climate and its effect on oxygen to the removal of nitrogen from the ocean," Deutsch said. "Our climate acts to change the total amount of nutrients in the ocean over the timescale of decades."

Low-oxygen zones are created by bacteria living in the deeper layers of the ocean that consume oxygen by feeding on dead algae that settle from the surface. Just as mountain climbers might feel adverse effects at high altitudes from a lack of air, marine animals that require oxygen to breathe find it difficult or impossible to live in these oxygen-depleted environments, Deutsch said.

Sea surface temperatures vary over the course of decades through a climate pattern called the Pacific Decadal Oscillation, during which small changes in depth occur for existing low-oxygen regions, Deutsch said. Low-oxygen regions that rise to warmer, shallower waters expand as bacteria become more active; regions that sink to colder, deeper waters shrink as the bacteria become more sluggish, as if placed in a refrigerator.

"We have shown for the first time that these low-oxygen regions are intrinsically very sensitive to small changes in climate," Deutsch said. "That is what makes the growth and shrinkage of these low-oxygen regions so dramatic."

Molecular oxygen from the atmosphere dissolves in sea water at the surface and is transported to deeper levels by ocean circulation currents, where it is consumed by bacteria, Deutsch said.

"The oxygen consumed by bacteria within the deeper layers of the ocean is replaced by water circulating through the ocean," he said. "The water is constantly stirring itself up, allowing the deeper parts to occasionally take a breath from the atmosphere."

A lack of oxygen is not the only thing fish and other marine life must contend with, according to Deutsch. When oxygen is very low, the bacteria will begin to consume nitrogen, one of the most important nutrients that sustain marine life.

"Almost all algae, the very base of the food chain, use nitrogen to stay alive," Deutsch said. "As these low-oxygen regions expand and contract, the amount of nutrients available to keep the algae alive at the surface of the ocean goes up and down."

Understanding the causes of oxygen and nitrogen depletion in the ocean is important for determining the effect on fisheries and fish populations, he said.

Deutsch and his team used a computer model of ocean circulation and biological processes that produce or consume oxygen to predict how the ocean's oxygen distribution has changed over the past half century. The researchers tested their predictions using observations made over the last several decades, specifically targeting areas where oxygen concentration is already low, because marine life in these areas will feel the changes most quickly.

How would rising global temperatures affect these low-oxygen environments?

As temperature increases, less oxygen leaves the atmosphere to dissolve in the ocean, Deutsch explained. Additionally, the shallower levels of the ocean heat up and become more buoyant, slowing the oxygen circulation to lower layers.

"In the case of a global temperature increase, we expect that low-oxygen regions will grow in size, similar to what happened at the end of the last ice age 30,000 years ago," Deutsch said. "Since these regions change greatly in size from decade to decade due to the Pacific Decadal Oscillation, more data is required before we can recognize an overall trend.

"Global warming will almost certainly influence the amount of oxygen in the ocean, but we expect it to be a slow effect that takes place over long periods of time," he added. "There are huge changes in the volume of this low-oxygen water, but the changes oscillate in a natural cycle instead of a persistent growth as many expected. Oxygen comes and goes in the ocean in a way that is not attributable to the long-term warming of the planet. Instead, it is part of the natural rhythm of the ocean."

The study was funded by the National Science Foundation, as well as by the Gordon and Betty Moore Foundation.

Co-authors include UCLA researchers Holger Brix and Hartmut Frenzel, assistant professor Taka Ito at Colorado State University, and professor LuAnne Thompson at the University of Washington.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Deutsch, H. Brix, T. Ito, H. Frenzel, L. Thompson. Climate-Forced Variability of Ocean Hypoxia. Science, 2011; DOI: 10.1126/science.1202422

Cite This Page:

University of California - Los Angeles. "Ocean's harmful low-oxygen zones growing, are sensitive to small changes in climate." ScienceDaily. ScienceDaily, 18 June 2011. <www.sciencedaily.com/releases/2011/06/110617110713.htm>.
University of California - Los Angeles. (2011, June 18). Ocean's harmful low-oxygen zones growing, are sensitive to small changes in climate. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2011/06/110617110713.htm
University of California - Los Angeles. "Ocean's harmful low-oxygen zones growing, are sensitive to small changes in climate." ScienceDaily. www.sciencedaily.com/releases/2011/06/110617110713.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins