Featured Research

from universities, journals, and other organizations

Nitrogen-fixing bacterial symbiont promises trove of natural products

Date:
June 17, 2011
Source:
American Society for Microbiology
Summary:
Soil-dwelling bacteria of the genus Frankia have the potential to produce a multitude of natural products, including antibiotics, herbicides, pigments, anticancer agents, and other useful products, according to new research.

Soil-dwelling bacteria of the genus Frankia have the potential to produce a multitude of natural products, including antibiotics, herbicides, pigments, anticancer agents, and other useful products, according to Bradley S. Moore of the Scripps Oceanographic Institute, La Jolla, and his collaborators in an article in the June 2011 issue of the journal Applied and Environmental Microbiology.

The researchers found genetic structures in this bacterium that resemble those of various valuable natural product categories through bioinformatics and genome mining. "This tremendous biosynthetic capacity is reminiscent of many industrially important bacteria such as those belonging to the genus, Streptomyces that produce the majority of the natural antibiotics used as drugs," says Moore.

"To see this capacity in a well-known microbe not previously exploited for its chemical richness was very rewarding from both an applied and basic science point of view," says Moore. Frankia are nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants (whose ranks include beech and cherry trees, and various gourd-producing plants). "Since the vast majority of the deduced [biosynthetic] pathways are unique to Frankia, it suggests that they employ a very complex and specialized communication with their plant host to establish and maintain their symbiosis. So lots to discover there."

Frankia have not previously been exploited partly because these bacteria are difficult to grow in the lab. But new genetic methods make it easier to transplant genes for promising natural products from Frankia into "more user-friendly host bacteria for production," says Moore.

Moreover, genome mining, a recent technique that involves searching for genetic sequences, was critical to the results, and "complementary to the far more laborious traditional natural product drug discovery that has gone unchanged for decades," says Moore. A greater understanding of how complex organic molecules are synthesized in nature laid additional groundwork for this, and for "a new revolution in the discovery of natural chemicals that will fuel new research into what functions these chemicals play in nature, and how they can be used to benefit society," says Moore.

The project grew out of a graduate class that Moore and Daniel Udwary (then his post-doc, now at the University of Rhode Island) taught on "Microbial Genome Mining," says Moore. Each student in the class researched a group of biosynthetic gene clusters that Moore and Udwary preselected. The students -- who are the majority of coauthors on the paper -- annotated their genes and based on biosynthetic principles, and predicted pathways leading to putative natural products. They then worked with the laboratories of Pieter Dorrestein at the University of California, San Diego (a mass spec specialist) and Lou Tisa at the University of New Hampshire (a Frankia biologist) to conduct preliminary proteomic and metabolomic analyses to probe whether the predicted pathways were operative, and whether small molecule chemistry was evident.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. W. Udwary, E. A. Gontang, A. C. Jones, C. S. Jones, A. W. Schultz, J. M. Winter, J. Y. Yang, N. Beauchemin, T. L. Capson, B. R. Clark, E. Esquenazi, A. S. Eustaquio, K. Freel, L. Gerwick, W. H. Gerwick, D. Gonzalez, W.-T. Liu, K. L. Malloy, K. N. Maloney, M. Nett, J. K. Nunnery, K. Penn, A. Prieto-Davo, T. L. Simmons, S. Weitz, M. C. Wilson, L. S. Tisa, P. C. Dorrestein, B. S. Moore. Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses. Applied and Environmental Microbiology, 2011; 77 (11): 3617 DOI: 10.1128/AEM.00038-11

Cite This Page:

American Society for Microbiology. "Nitrogen-fixing bacterial symbiont promises trove of natural products." ScienceDaily. ScienceDaily, 17 June 2011. <www.sciencedaily.com/releases/2011/06/110617185023.htm>.
American Society for Microbiology. (2011, June 17). Nitrogen-fixing bacterial symbiont promises trove of natural products. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2011/06/110617185023.htm
American Society for Microbiology. "Nitrogen-fixing bacterial symbiont promises trove of natural products." ScienceDaily. www.sciencedaily.com/releases/2011/06/110617185023.htm (accessed August 28, 2014).

Share This




More Plants & Animals News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins