Featured Research

from universities, journals, and other organizations

Body temperature of dinosaurs measured for the first time

Date:
June 28, 2011
Source:
National Science Foundation
Summary:
When dinosaurs were first discovered in the mid-19th century, paleontologists thought they were plodding beasts that relied on their environment to keep warm, like modern-day reptiles.

Close-up of a Camarasaurus skull, displaying its dentition with large spatulate teeth.
Credit: Sauriermuseum Aathal, Switzerland

Were dinosaurs slow and lumbering, or quick and agile? It depends largely on whether they were cold- or warm-blooded.

When dinosaurs were first discovered in the mid-19th century, paleontologists thought they were plodding beasts that relied on their environment to keep warm, like modern-day reptiles.

But research during the last few decades suggests that they were faster creatures, nimble like the velociraptors or T. rex depicted in the movie Jurassic Park, requiring warmer, regulated body temperatures.

Now, researchers, led by Robert Eagle of the California Institute of Technology, have developed a new way of determining the body temperatures of dinosaurs for the first time, providing new insights into whether dinosaurs were cold- or warm-blooded.

"Eagle and colleagues have applied the newest and most innovative techniques to answering the question of whether dinosaurs were warm- or cold-blooded," says Lisa Boush, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research.

"The team has made important strides in discovering that the body temperature of dinosaurs was close to that of mammals, and that the dinosaurs' physiology allowed them to regulate that temperature. The result has implications for our understanding of dinosaurs' ecology--and demise."

By analyzing the teeth of sauropods--long-tailed, long-necked dinosaurs that were the biggest land animals ever to have lived--the scientists found that these dinosaurs were about as warm as most modern mammals.

"This is like being able to stick a thermometer in an animal that has been extinct for 150 million years," says Eagle, a geochemist at Caltech and lead author of a paper to be published online June 23 in the journal Science Express.

"The consensus was that no one would ever measure dinosaur body temperatures, that it's impossible to do," says John Eiler, a co-author and geochemist at Caltech. But using a technique pioneered in Eiler's lab, the team did just that.

The researchers analyzed 11 teeth, unearthed up in Tanzania, Wyoming and Oklahoma, that belonged to the dinosaurs Brachiosaurus and Camarasaurus.

They found that Brachiosaurus had a temperature of about 38.2 degrees Celsius (100.8 degrees Fahrenheit) and Camarasaurus had one of about 35.7 degrees Celsius (96.3 degrees Fahrenheit), warmer than modern and extinct crocodiles and alligators, but cooler than birds.

The measurements are accurate to within one or two degrees Celsius.

"Nobody has used this approach to look at dinosaur body temperatures before, so our study provides a completely different angle on the long-standing debate about dinosaur physiology," Eagle says.

The fact that the temperatures were similar to those of most modern mammals might seem to imply that dinosaurs had a warm-blooded metabolism.

But, the researchers say, the issue is more complex. Because sauropod dinosaurs were so huge, they could retain their body heat much more efficiently than smaller mammals like humans.

"The body temperatures we've estimated provide key information that any model of dinosaur physiology has to be able to explain," says Aradhna Tripati, a co-author who's a geochemist at University of California, Los Angeles and visiting geochemist at Caltech. "As a result, the data can help scientists test physiological models to explain how these organisms lived."

The measured temperatures are lower than what's predicted by some models of dinosaur body temperatures, suggesting there is something missing in scientists' understanding of dinosaur physiology.

These models imply that dinosaurs were so-called gigantotherms, that they maintained warm temperatures by their sheer size.

To explain the lower temperatures, the researchers suggest that dinosaurs could have had physiological or behavioral adaptations that allowed them to avoid getting too hot.

The dinosaurs could have had lower metabolic rates to reduce the amount of internal heat. They could also have had something like an air-sac system to dissipate heat.

Alternatively, they could have dispelled heat through their long necks and tails.

Previously, researchers have only been able to use indirect ways to gauge dinosaur metabolism or body temperatures.

For example, they inferred dinosaur behavior and physiology by figuring out how fast dinosaurs ran based on the spacing of dinosaur tracks, studying the ratio of predators to prey in the fossil record, or measuring the growth rates of bone.

But these lines of evidence were often in conflict.

"For any position you take, you can easily find counter-examples," Eiler says. "How an organism budgets the energy supply it gets from food, and creates and stores the energy in its muscles--there are no fossil remains for that."

Eagle, Eiler and colleagues developed what's known as a clumped-isotope technique that shows that it'spossible to determine accurate body temperatures of dinosaurs.

"We're getting at body temperature through a line of reasoning that I think is relatively bullet-proof, provided you can find well-preserved samples," Eiler says.

In this method, the researchers measured the concentrations of the rare isotopes carbon-13 and oxygen-18 in bioapatite, a mineral found in teeth and bone.

How often these isotopes bond with each other--or "clump"--depends on temperature.

The lower the temperature, the more carbon-13 and oxygen-18 bond in bioapatite. Measuring the clumping of these isotopes is a direct way to determine the temperature of the environment in which the mineral formed--in this case, inside the dinosaur.

"What we're doing is special in that it's thermodynamically-based," Eiler says. "Thermodynamics, like the laws of gravity, is independent of setting, time and context."

Because thermodynamics worked the same way 150 million years ago as it does today, measuring isotope clumping is a reliable technique, says Eiler.

Identifying the most well-preserved samples of dinosaur teeth was one of the major challenges of the analysis.

The scientists used several ways of finding the best samples. For example, they compared the isotopic compositions of resistant parts of teeth--the enamel--with easily altered materials like the fossil bones of related animals.

The next step, the researchers say, is to determine the temperatures of more dinosaur samples, and extend the study to other species of extinct vertebrates.

In particular, discovering the temperatures of unusually small and young dinosaurs would help test whether dinosaurs were indeed gigantotherms.

Knowing the body temperatures of more dinosaurs and other extinct animals would also allow scientists to learn more about how the physiology of modern mammals and birds evolved.

In addition to Eagle, Eiler and Tripati, co-authors of the paper are Thomas Tόtken from the University of Bonn, Germany; Caltech undergraduate Taylor Martin; Henry Fricke from Colorado College; Melissa Connely from the Tate Geological Museum in Casper, Wyoming; and Richard Cifelli from the University of Oklahoma. Eagle also has a research affiliation with UCLA.

The research was also supported by the German Research Foundation.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. Eagle, T. Tutken, T. S. Martin, A. K. Tripati, H. C. Fricke, M. Connely, R. L. Cifelli, J. M. Eiler. Dinosaur Body Temperatures Determined from Isotopic (13C-18O) Ordering in Fossil Biominerals. Science, 2011; DOI: 10.1126/science.1206196

Cite This Page:

National Science Foundation. "Body temperature of dinosaurs measured for the first time." ScienceDaily. ScienceDaily, 28 June 2011. <www.sciencedaily.com/releases/2011/06/110628132557.htm>.
National Science Foundation. (2011, June 28). Body temperature of dinosaurs measured for the first time. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/06/110628132557.htm
National Science Foundation. "Body temperature of dinosaurs measured for the first time." ScienceDaily. www.sciencedaily.com/releases/2011/06/110628132557.htm (accessed April 18, 2014).

Share This



More Fossils & Ruins News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Couple Finds Love Letters From WWI In Attic

Couple Finds Love Letters From WWI In Attic

Newsy (Apr. 17, 2014) — A couple found love letters from World War I in their attic. They were able to deliver them to relatives of the writer of those letters. Video provided by Newsy
Powered by NewsLook.com
Erotic Art Offers Glimpse of China's 'lost' Sexual Philosophy

Erotic Art Offers Glimpse of China's 'lost' Sexual Philosophy

AFP (Apr. 16, 2014) — Explicit Chinese art works dating back centuries go on display in Hong Kong, revealing China's ancient relationship with sex. Video provided by AFP
Powered by NewsLook.com
French Historians Fight to Save Iconic La Samaritaine Buildings

French Historians Fight to Save Iconic La Samaritaine Buildings

AFP (Apr. 15, 2014) — Parisians and local historians are fighting to save one of the French capital's iconic buildings, the La Samaritaine department store. Duration: 01:42 Video provided by AFP
Powered by NewsLook.com
Bee Fossils Provide Insight Into Ice Age Environment

Bee Fossils Provide Insight Into Ice Age Environment

Newsy (Apr. 12, 2014) — Archeologists have found many fossils in the La Brea Tar Pits, including those of saber-tooth tigers and mammoths. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins