Featured Research

from universities, journals, and other organizations

Climate change reducing ocean's carbon dioxide uptake, new analysis shows

Date:
July 11, 2011
Source:
University of Wisconsin-Madison
Summary:
How deep is the ocean's capacity to buffer against climate change? As one of the planet's largest single carbon absorbers, the ocean takes up roughly one-third of all human carbon emissions, reducing atmospheric carbon dioxide and its associated global changes. But whether the ocean can continue mopping up human-produced carbon at the same rate is still up in the air. In a new analysis, researchers identify a likely source of many of those inconsistencies and provide some of the first observational evidence that climate change is negatively impacting the ocean carbon sink.

A new analysis provides some of the first observational evidence that climate change is negatively impacting the ocean carbon sink.
Credit: © lunamarina / Fotolia

How deep is the ocean's capacity to buffer against climate change?

As one of the planet's largest single carbon absorbers, the ocean takes up roughly one-third of all human carbon emissions, reducing atmospheric carbon dioxide and its associated global changes.

But whether the ocean can continue mopping up human-produced carbon at the same rate is still up in the air. Previous studies on the topic have yielded conflicting results, says University of Wisconsin-Madison assistant professor Galen McKinley.

In a new analysis published online July 10 in Nature Geoscience, McKinley and her colleagues identify a likely source of many of those inconsistencies and provide some of the first observational evidence that climate change is negatively impacting the ocean carbon sink.

"The ocean is taking up less carbon because of the warming caused by the carbon in the atmosphere," says McKinley, an assistant professor of atmospheric and oceanic sciences and a member of the Center for Climatic Research in the Nelson Institute for Environmental Studies.

The analysis differs from previous studies in its scope across both time and space. One of the biggest challenges in asking how climate is affecting the ocean is simply a lack of data, McKinley says, with available information clustered along shipping lanes and other areas where scientists can take advantage of existing boat traffic. With a dearth of other sampling sites, many studies have simply extrapolated trends from limited areas to broader swaths of the ocean.

McKinley and colleagues at UW-Madison, the Lamont-Doherty Earth Observatory at Columbia University, and the Universite Pierre et Marie Curie in Paris expanded their analysis by combining existing data from a range of years (1981-2009), methodologies, and locations spanning most of the North Atlantic into a single time series for each of three large regions called gyres, defined by distinct physical and biological characteristics.

They found a high degree of natural variability that often masked longer-term patterns of change and could explain why previous conclusions have disagreed. They discovered that apparent trends in ocean carbon uptake are highly dependent on exactly when and where you look -- on the 10- to 15-year time scale, even overlapping time intervals sometimes suggested opposite effects.

"Because the ocean is so variable, we need at least 25 years' worth of data to really see the effect of carbon accumulation in the atmosphere," she says. "This is a big issue in many branches of climate science -- what is natural variability, and what is climate change?"

Working with nearly three decades of data, the researchers were able to cut through the variability and identify underlying trends in the surface CO2 throughout the North Atlantic.

During the past three decades, increases in atmospheric carbon dioxide have largely been matched by corresponding increases in dissolved carbon dioxide in the seawater. The gases equilibrate across the air-water interface, influenced by how much carbon is in the atmosphere and the ocean and how much carbon dioxide the water is able to hold as determined by its water chemistry.

But the researchers found that rising temperatures are slowing the carbon absorption across a large portion of the subtropical North Atlantic. Warmer water cannot hold as much carbon dioxide, so the ocean's carbon capacity is decreasing as it warms.

In watching for effects of increasing atmospheric carbon on the ocean's uptake, many people have looked for indications that the carbon content of the ocean is rising faster than that of the atmosphere, McKinley says. However, their new results show that the ocean sink could be weakening even without that visible sign.

"More likely what we're going to see is that the ocean will keep its equilibration but it doesn't have to take up as much carbon to do it because it's getting warmer at the same time," she says. "We are already seeing this in the North Atlantic subtropical gyre, and this is some of the first evidence for climate damping the ocean's ability to take up carbon from the atmosphere."

She stresses the need to improve available datasets and expand this type of analysis to other oceans, which are relatively less-studied than the North Atlantic, to continue to refine carbon uptake trends in different ocean regions. This information will be critical for decision-making, since any decrease in ocean uptake may require greater human efforts to control carbon dioxide levels in the atmosphere.

McKinley's work on the project was supported by the National Aeronautics and Space Administration.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Jill Sakai. Note: Materials may be edited for content and length.


Journal Reference:

  1. Galen A. McKinley, Amanda R. Fay, Taro Takahashi, Nicolas Metzl. Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nature Geoscience, 2011; DOI: 10.1038/ngeo1193

Cite This Page:

University of Wisconsin-Madison. "Climate change reducing ocean's carbon dioxide uptake, new analysis shows." ScienceDaily. ScienceDaily, 11 July 2011. <www.sciencedaily.com/releases/2011/07/110710132816.htm>.
University of Wisconsin-Madison. (2011, July 11). Climate change reducing ocean's carbon dioxide uptake, new analysis shows. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/07/110710132816.htm
University of Wisconsin-Madison. "Climate change reducing ocean's carbon dioxide uptake, new analysis shows." ScienceDaily. www.sciencedaily.com/releases/2011/07/110710132816.htm (accessed April 23, 2014).

Share This



More Earth & Climate News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) — NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins