Featured Research

from universities, journals, and other organizations

Massive enzyme footballs control sugar metabolism

Date:
July 18, 2011
Source:
Institut Laue-Langevin (ILL)
Summary:
Neutron scattering has revealed how massive enzyme complexes inside cells might determine whether sugar is burnt for energy or stored as fat. The findings promise to improve understanding of diabetes and a range of metabolic diseases. Scientists using neutron scattering have shown how pyruvate dehydrogenase complexes (PDCs) could control the rate of sugar metabolism by actively changing their own composition.

Images 1-4 show the different arrangements of enzymes E2 (structural - green) and E3BP (metabolising - red) within the PDC structure. The PDC molecules can exist in any of these forms within the cell depending on the rate of metabolism required. Image 1, with the highest proportion of the E3BP enzyme, would promote the highest rate of metabolism and could play a key role in bringing blood sugar levels down to normal rates following a meal.
Credit: Image courtesy of Institut Laue-Langevin (ILL)

Neutron scattering has revealed how massive enzyme complexes inside cells might determine whether sugar is burnt for energy or stored as fat. The findings promise to improve understanding of diabetes and a range of metabolic diseases. Scientists using neutron scattering at the Institut Laue-Langevin (ILL) have shown how pyruvate dehydrogenase complexes (PDCs) could control the rate of sugar metabolism by actively changing their own composition.

The research is published in the Biochemical Journal.

PDCs are found within all cell types from bacteria to mammals and are known to help regulate the level of sugar in the blood to meet the continuously changing metabolic demands of the body. The complexes have a unique, football-shaped central scaffold, forming a hollow ball with 12 open pentagonal faces. They are composed of 60 subunits made up of two related proteins. The first is a scaffolding enzyme that acts as the structural heart of the complex, whilst the second has binding role with a third enzyme (attached to the outside of the central football) to generate rapid metabolism. Whilst the structure of the complex is well understood, the exact composition was undetermined. Most previous purification studies had suggested a ratio of 48 scaffold enzyme units to 12 binding units.

The team at the ILL synthesised human PDC in bacteria and identified the location of the two enzymes through low angle neutron scattering. This revealed a new, unexpected ratio of 40:20 in favour of the scaffold enzyme. However experiments on PDCs from cow heart cells confirmed the expected figure of 48:12. With further mathematical modelling the team have shown that their synthesised PDC could vary its composition, with any ratio from 60:0 to 40:20 possible. This flexibility may explain why the PDC complex is so quick to react to changes in blood sugar levels, says Dr Phil Callow, an instrument scientist at ILL. "Our models show how the structural organisation of PDC could be fine-tuned through changes in its overall composition to promote maximal metabolic efficiency." These findings could provide vital information for future treatments of diseases caused by unusual blood sugar levels such as diabetes and those directly related to mutations in the PDC such as Biliary cirrhosis, a progressive form of liver inflammation.

Professor Gordon Lindsay, University of Glasgow: "Using neutron scattering at ILL, we have shown the potential of these football structures to vary their composition to allow the most efficient utilisation of sugars by the body and enables precise control of sugar breakdown. The next step is to see if this occurs naturally across different tissues of the body and in different living organisms."

Andrew Harrison, ILL's Director for Science: "ILL has a proud history carrying out fundamental research that underpins medical breakthroughs and potential new treatments. The PDC complexes studied by Dr Callow and his colleagues are too large for most other techniques. By using neutrons and the wide range of instruments available at ILL, they have given the medical world a new perspective on diseases that affect millions of people across the world."


Story Source:

The above story is based on materials provided by Institut Laue-Langevin (ILL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Callow et al. Variation in the organisation and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly. Biochemical Journal, (2011), 437, 13th July 2011

Cite This Page:

Institut Laue-Langevin (ILL). "Massive enzyme footballs control sugar metabolism." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110718091823.htm>.
Institut Laue-Langevin (ILL). (2011, July 18). Massive enzyme footballs control sugar metabolism. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/07/110718091823.htm
Institut Laue-Langevin (ILL). "Massive enzyme footballs control sugar metabolism." ScienceDaily. www.sciencedaily.com/releases/2011/07/110718091823.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins