Featured Research

from universities, journals, and other organizations

Ancient footprints show human-like walking began nearly 4 million years ago

Date:
July 20, 2011
Source:
University of Liverpool
Summary:
Scientists have found that ancient footprints in Laetoli, Tanzania, show that human-like features of the feet and gait existed almost two million years earlier than previously thought.

Researchers used a new statistical technique, based on methods employed in functional brain imaging, to obtain a three-dimensional average of the 11 intact prints in the Laetoli trail. This was then compared to data from studies of footprint formation and under-foot pressures generated from walking in modern humans and other living great apes. Computer simulation was used to predict the footprints that would have been formed by different types of gaits in the likely printmaker, a species called Australopithecus afarensis.
Credit: Courtesy of University of Manchester

Scientists at the University of Liverpool have found that ancient footprints in Laetoli, Tanzania, show that human-like features of the feet and gait existed almost two million years earlier than previously thought.

Many earlier studies have suggested that the characteristics of the human foot, such as the ability to push off the ground with the big toe, and a fully upright bipedal gait, emerged in early Homo, approximately 1.9 million years-ago.

Liverpool researchers, however, in collaboration with scientists at the University of Manchester and Bournemouth University, have now shown that footprints of a human ancestor dating back 3.7 million years ago, show features of the foot with more similarities to the gait of modern humans than with the type of bipedal walking used by chimpanzees, orangutans and gorillas.

The footprint site of Laetoli contains the earliest known trail made by human ancestors and includes 11 individual prints in good condition. Previous studies have been primarily based on single prints and have therefore been liable to misinterpreting artificial features, such as erosion and other environmental factors, as reflecting genuine features of the footprint. This has resulted in many years of debate over the exact characteristics of gait in early human ancestors.

The team used a new statistical technique, based on methods employed in functional brain imaging, to obtain a three-dimensional average of the 11 intact prints in the Laetoli trail. This was then compared to data from studies of footprint formation and under-foot pressures generated from walking in modern humans and other living great apes. Computer simulation was used to predict the footprints that would have been formed by different types of gaits in the likely printmaker, a species called Australopithecus afarensis.

Professor Robin Crompton, from the University of Liverpool's Institute of Ageing and Chronic Disease, said: "It was previously thought that Australopithecus afarensis walked in a crouched posture, and on the side of the foot, pushing off the ground with the middle part of the foot, as today's great apes do.

"We found, however, that the Laetoli prints represented a type of bipedal walking that was fully upright and driven by the front of the foot, particularly the big toe, much like humans today, and quite different to bipedal walking of chimpanzees and other apes.

"Quite remarkably, we found that some healthy humans produce footprints that are more like those of other apes than the Laetoli prints. The foot function represented by the prints is therefore most likely to be similar to patterns seen in modern-humans. This is important because the development of the features of human foot function helped our ancestors to expand further out of Africa.

"Our work demonstrates that many of these features evolved nearly four million years ago in a species that most consider to be partially tree-dwelling. These findings show support for a previous study at Liverpool that showed upright bipedal walking originally evolved in a tree-living ancestor of living great apes and humans. Australopithecus afarensis, however, was not modern in body proportions of the limbs and torso.

"The characteristic long-legged, short body form of the modern human allows us to walk and run great distances, even when carrying heavy loads. Australopithecus afarensis had the reverse physical build, short legs and a long body, which makes it probable that it could only walk or run effectively over short distances. We now need to determine when our ancestors first became able to walk or run over the very long distances that enabled humans to colonise the world."

Dr Bill Sellers, from the University of Manchester's Faculty of Life Sciences, said: "The shape of the human foot is probably one of the most obvious differences between us and our nearest living relatives, the great apes. The difference in foot function is thought to be linked to the fact that humans spend all of their time on the ground, but there has been a lot of debate as to when in the fossil record these changes occurred. Our work shows that there is considerably more functional overlap than previously expected.

"The Laetoli footprint trail is a snapshot of how early human ancestors used their feet 3.7 million years ago. By using a new technique for averaging footprints, foot pressure information from modern great apes, and computer simulation of walking in the proposed Laetoli printmaker, we can see that the evidence points to surprisingly modern foot function very early on in the human lineage."

The research, funded by the Leverhulme Trust and the Natural Environment Research Council (NERC), is published in the Royal Society journal Interface.


Story Source:

The above story is based on materials provided by University of Liverpool. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robin H. Crompton, Todd C. Pataky, Russell Savage, Kristiaan D'Août, Matthew R. Bennett, Michael H. Day, Karl Bates, Sarita Morse, William I. Sellers. Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. Journal of the Royal Society Interface, 2011; DOI: 10.1098/rsif.2011.0258

Cite This Page:

University of Liverpool. "Ancient footprints show human-like walking began nearly 4 million years ago." ScienceDaily. ScienceDaily, 20 July 2011. <www.sciencedaily.com/releases/2011/07/110719194356.htm>.
University of Liverpool. (2011, July 20). Ancient footprints show human-like walking began nearly 4 million years ago. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/07/110719194356.htm
University of Liverpool. "Ancient footprints show human-like walking began nearly 4 million years ago." ScienceDaily. www.sciencedaily.com/releases/2011/07/110719194356.htm (accessed July 22, 2014).

Share This




More Fossils & Ruins News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) — As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
45 Years Later, Buzz Aldrin on Walking on Moon

45 Years Later, Buzz Aldrin on Walking on Moon

AP (July 18, 2014) — Forty-five years ago Sunday, Apollo 11's Neil Armstrong and Buzz Aldrin became the first humans to set foot on the moon. Speaking at the Intrepid Sea, Air & Space Museum, Aldrin described what he was thinking right before the historic walk. (July 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins