Featured Research

from universities, journals, and other organizations

Identical virus, host populations can prevail for centuries

Date:
July 22, 2011
Source:
Woods Hole Oceanographic Institution
Summary:
A scientist, analyzing ancient plankton DNA signatures in sediments of the Black Sea, has found for the first time that the same genetic populations of a virus and its algal host can persist and coexist for centuries. The findings have implications for the ecological significance of viruses in shaping algae ecosystems in the ocean, and perhaps fresh water as well.

The giant gravity core just after being removed from the core barrel. The sediments were captured inside a plastic liner ("sausage core") during coring.
Credit: Photo by Cornelia Wuchter, Woods Hole Oceanographic Institution

A Woods Hole Oceanographic Institution (WHOI) scientist, analyzing ancient plankton DNA signatures in sediments of the Black Sea, has found for the first time that the same genetic populations of a virus and its algal host can persist and coexist for centuries. The findings have implications for the ecological significance of viruses in shaping algae ecosystems in the ocean, and perhaps fresh water as well.

"The finding that the DNA of viruses and algal host cells can be preserved in the geological records is of great interest to microbial ecologists," said Marco Coolen of WHOI's Marine Chemistry and Geochemistry department and author of the study, which appears in the July 22 issue of Science. "This offers unprecedented insights into long-term algal, viral, and host population dynamics between globally important algae and their viral pathogens in the ocean."

In examining the 7,000-year continuous genetic record in sediments underlying the Black Sea, Coolen discovered that the DNA of both the Coccolithovirus and its host, Emiliania huxleyi, a phytoplankton that plays a major role in the global carbon cycle, have been preserved over thousands of years.

"Biologists now for the first time have a picture of long-term viral/host dynamics in the ocean," Coolen said. Previous laboratory work had confirmed such co-existence for only a few successive years.

Coolen added that much longer virus/host records such as the ones he studied, for the first time "could answer important questions, such as: 'What factors are involved in controlling viral infection of the globally important marine algae and how long can the same host and virus populations co-exist?' and 'Were past algal populations only controlled by the prevailing environmental conditions or did viruses also play an important role in shaping past algal community structures?'"

The latter question is of particular interest, Coolen said, because "nobody has long-term records of viruses. Ecological shifts in past algal communities are generally explained by changes in climate and environmental conditions." Now it seems possible, he said, that viruses also played an important role in shaping past algal communities.

This is important for E. huxleyi, which performs photosynthesis -- "just like plants," says WHOI scientist Benjamin Van Mooy. "They consume carbon dioxide." In doing so, they reduce the amount of CO2 released into the atmosphere. They form a calcium carbonate shell, also helping to regulate the carbon cycle.

But DNA viruses of the genus Coccolithovirus kill off large populations of E. huxleyi, particularly in the North Atlantic. Van Mooy has traced this phenomenon to lipids, or fatty compounds, in certain viruses. If viruses are killing off phytoplankton, this can increase greenhouse emissions, Van Mooy suggests. "That's important because if viruses infect a whole bunch of cells, then they can't perform photosynthesis, they can't take up carbon dioxide."

Coolen says his data buttress Van Mooy's work by suggesting a significant role for viruses in affecting the algal population and carbon cycling in the past. He observed, for example, major shifts in the types of Coccolithovirus and E. huxleyi in the Black Sea sediments over the centuries. Environmental conditions almost certainly had a role in selecting successful E. huxleyi genotypes, but Coolen believes viruses may have as well.

"Until now, shifts in past plankton species identified through the microscopic analysis of preserved diagnostic cellular fossils have mainly been linked to changes in environmental conditions and climate," Coolen said. "However, understanding the viral role in controlling past algal stocks is necessary to improve the interpretation of past climate records. This can now be studied using ancient DNA methods."

One thing that enabled Coolen to study sediments so far back in time was the continuous absence of oxygen in the bottom waters of the Black Sea the last 7,500 years. "This lack of oxygen facilitated the preservation of organic material in general and ancient viral and algal plankton DNA in particular," he said.

In addition, unpublished data from Coolen's lab "show that Black Sea sediments older than 7,500 years contain well-preserved DNA of a different suite of algae adapted to lower salinities and freshwater environments and likely also DNA of their viral pathogens," he said. "In other words, comparable studies could most likely be employed in a wide variety of marine and lake ecosystems.

"In a different and broader context," he adds, "it will perhaps be possible to reconstruct the historical spread of human viral diseases since a variety of human viral infections are also caused by DNA viruses."

The research was funded by grants from the National Science Foundation (NSF) and a grant from the Andrew W. Mellon Foundation.


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. J. L. Coolen. 7000 Years of Emiliania huxleyi Viruses in the Black Sea. Science, 2011; 333 (6041): 451 DOI: 10.1126/science.1200072

Cite This Page:

Woods Hole Oceanographic Institution. "Identical virus, host populations can prevail for centuries." ScienceDaily. ScienceDaily, 22 July 2011. <www.sciencedaily.com/releases/2011/07/110721142412.htm>.
Woods Hole Oceanographic Institution. (2011, July 22). Identical virus, host populations can prevail for centuries. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/07/110721142412.htm
Woods Hole Oceanographic Institution. "Identical virus, host populations can prevail for centuries." ScienceDaily. www.sciencedaily.com/releases/2011/07/110721142412.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins