Featured Research

from universities, journals, and other organizations

3-D atomic structure of popular drug target determined

Date:
July 26, 2011
Source:
VIB
Summary:
Scientists have revealed the complete three-dimensional atomic structure of an activated GPCR (beta-2AR) in a complex with its G protein. G protein-coupled receptors (GPCRs) are popular drug targets, accounting for about one-third of approved drugs and many hundreds of drugs currently in development.

An international consortium has revealed the complete three-dimensional atomic structure of an activated GPCR (beta-2AR) in a complex with its G protein.
Credit: Image courtesy of VIB

In an article in Nature, scientists from Stanford University, University of Wisconsin and VIB-Vrije Universiteit Brussel now reveal the complete three-dimensional atomic structure of an activated GPCR -- the beta-2 adrenergic receptor (beta-2AR) -- in a complex with its G protein. This is an important step towards the understanding of how the receptors actually work. Beta-2 AR is activated by the hormones adrenaline and noradrenaline. Activation of the receptor lies at the basis of the body's fight-or-flight response by speeding up the heart, increasing blood pressure and opening airways. As a result, it is a key target for anti-asthma and blood pressure medications.

Related Articles


G protein-coupled receptors (GPCRs) are popular drug targets, accounting for about one-third of approved drugs and many hundreds of drugs currently in development. They act as molecular switches that transduce extracellular signals by activating heterotrimeric G proteins (G proteins) located at the inside of the cell. Changes in shape of these proteins determine essential processes, including whether an eye detects light, a virus invades a cell or a drug slows a racing heart. GPCRs sit in the membranes of cells throughout the body. They pick up signals from outside the body -- such as odors, flavors or light -- and signals from within the body, such as neurotransmitters or hormones. Once those signals are transmitted to the inside of the cell, they activate intracellular G proteins, triggering a variety of biochemical pathways. Despite their importance in biology and medicine, the way G protein-coupled receptors couple the detection of a signals from the outside world to the activation of the G-protein at the inside of the cell has remained largely unknown -- an important obstacle to understanding their function.

Adrenaline binds from the outside of the cell to the adrenergic receptor that is embedded in the cellular membrane, causing the heterotrimeric G protein (Gs) to fall apart in two pieces (G-alpha-S and G-beta-gamma). One piece (G-alpha-S) transmits the adrenaline signal to an effector enzyme; the other piece (G-beta-gamma) transmits the signal to an effector ion channel.

Although the receptor beta-2AR been discovered 20 years ago, the exact mechanism of its function remained unknown, impeding improvements of the drugs that act on this receptor. To explain the function of this receptor, it was important to catch the signaling complex in the act, a dance in two parts featuring four key players: the hormone (adrenaline or noradrenaline), the receptor and the G protein that is built from G-alpha-S and G beta-gamma.

Now, 20 year later, this is exactly what the researchers Stanford University, University of Wisconsin and VIB-Vrije Universiteit Brussel have accomplished. They produced two key freeze-frame pictures of this dance. In January 2011, they produced the first images of an active receptor, coupled to a drug-like molecule that acts like the hormone. In a follow-up article in Nature, they now present the poignant moment in the ballet -- the four-partner embrace that includes the hormone, the receptor, G-alpha-S and G-beta-gamma. These findings provide the very first three dimensional insights in transmembrane signaling trough GPCRs, a molecular process that is considered to be one of the most fascinating problems in biology. The discovery is important because the interactions between the GPCR and G-alpha-beta-gamma are pharmacologically relevant and unlock the secrets of functional selectivity, the ability of different drugs to coax distinct downstream effects from a single kind of receptor.

Obtaining a 3D image of the Hormone:GPCR:G-alpha-beta-gamma complex proved to be very complicated. The large and membrane embedded complex is unstable, difficult to prepare and the components are difficult to express and purify. Jan Steyaert and Els Pardon in Brussels produced a Xaperone™, that binds simultaneously on G-alpha-S and G-beta-gamma and holds these proteins together in the complex. The structure of this stabilized complex was determined using X-ray crystallography techniques. The Advanced Photon Source beamline 23 ID-B at the Aragon Synchrotron, one of the most powerful X-ray sources worldwide was used as a molecular camera.


Story Source:

The above story is based on materials provided by VIB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sψren G. F. Rasmussen, Brian T. DeVree, Yaozhong Zou, Andrew C. Kruse, Ka Young Chung, Tong Sun Kobilka, Foon Sun Thian, Pil Seok Chae, Els Pardon, Diane Calinski, Jesper M. Mathiesen, Syed T. A. Shah, Joseph A. Lyons, Martin Caffrey, Samuel H. Gellman, Jan Steyaert, Georgios Skiniotis, William I. Weis, Roger K. Sunahara, Brian K. Kobilka. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 2011; DOI: 10.1038/nature10361

Cite This Page:

VIB. "3-D atomic structure of popular drug target determined." ScienceDaily. ScienceDaily, 26 July 2011. <www.sciencedaily.com/releases/2011/07/110726092958.htm>.
VIB. (2011, July 26). 3-D atomic structure of popular drug target determined. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2011/07/110726092958.htm
VIB. "3-D atomic structure of popular drug target determined." ScienceDaily. www.sciencedaily.com/releases/2011/07/110726092958.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins