Featured Research

from universities, journals, and other organizations

Stress protection: How blue-green algae hoard energy

Date:
August 8, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, researchers now show that it is possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering.

In the wild-type cell (left), the energy produced through photosynthesis is used to produce ATP. In the genetically modified cell (right), a considerable amount of energy in the form of protons (H+) can transverse the membrane without producing ATP. As a result of this “leak” of the ATPase, certain photosynthetic processes can work at least twice as fast. The extra electrons obtained could be made biotechnologically useful (see question mark), e.g. by introducing an enzyme that produces hydrogen (hydrogenase).
Credit: © AG Rögner

Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. By removing this switch, researchers now show that it is possible to use the excess energy of the bacteria for biotechnological purposes such as hydrogen production, without the bacteria suffering.

The discovery was made by researchers at the Ruhr-Universität led by Prof. Dr. Matthias Rögner (Biochemistry of Plants, Faculty of Biology and Biotechnology). Their results, which they obtained together with a Japanese research group from the Tokyo Institute of Technology, are published in the Journal of Biological Chemistry.

Molecular switch prevents waste of energy

The energy-rich molecule ATP serves as a store for the energy gained through photosynthesis in plants. It is built up, and where necessary broken down again, by the enzyme ATPase. To guard the bacterium against stress situations with too much or too little light, the ATPase of the cyanobacteria has a small area which acts like a switch. It prevents the ATP from being broken down prematurely in the dark, when no photosynthesis takes place. The bacterium thus creates a store of energy which helps it through stress phases. However, this switch also slows the rate of photosynthetic electron transport with the water splitting in light: "You have to imagine it like wanting to squeeze something into a full storehouse against resistance," says Prof. Rögner.

On the way to biotechnological hydrogen

In the experiment, he and his colleagues removed the switch area of the ATPase in cyanobacteria by means of genetic engineering. "Of course we expected that the bacteria would suffer much more afterwards and that they would become much slower," he explains. "But that was not the case." The bacteria grew just as usual under laboratory conditions -- without light stress. However, they create lower ATP energy reserves, so they can't survive very long dark periods as well as the wild type. On the other hand, the excess energy in light, which otherwise went into the reserves, is now available for biotechnological use.

"This should make it possible to use at least 50% of the energy gained from light-driven water splitting for other processes in the future, e.g. for solar-powered biological hydrogen production through cyanobacterial mass cultures in photobioreactors," estimates Prof. Roegner.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Imashimizu, G. Bernat, E.-I. Sunamura, M. Broekmans, H. Konno, K. Isato, M. Rogner, T. Hisabori. Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by   and   Subunits Is Significant for Light/Dark Adaptation. Journal of Biological Chemistry, 2011; 286 (30): 26595 DOI: 10.1074/jbc.M111.234138

Cite This Page:

Ruhr-Universitaet-Bochum. "Stress protection: How blue-green algae hoard energy." ScienceDaily. ScienceDaily, 8 August 2011. <www.sciencedaily.com/releases/2011/08/110801094249.htm>.
Ruhr-Universitaet-Bochum. (2011, August 8). Stress protection: How blue-green algae hoard energy. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/08/110801094249.htm
Ruhr-Universitaet-Bochum. "Stress protection: How blue-green algae hoard energy." ScienceDaily. www.sciencedaily.com/releases/2011/08/110801094249.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) — Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) — A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins