Featured Research

from universities, journals, and other organizations

Rising carbon dioxide could reverse drying effects of higher temperatures on rangelands

Date:
August 4, 2011
Source:
USDA/Agricultural Research Service
Summary:
Rising carbon dioxide levels can reverse the drying effects of predicted higher temperatures on semi-arid rangelands, according to a new study by a team of US Department of Agriculture and university scientists.

ARS plant physiologist Jack Morgan is leader of a group replicating anticipated higher carbon dioxide and temperature levels to study their impact on semi-arid rangeland grasses.
Credit: Image courtesy of USDA/Agricultural Research Service

Rising carbon dioxide (CO2) levels can reverse the drying effects of predicted higher temperatures on semi-arid rangelands, according to a study published in the journal Nature by a team of U.S. Department of Agriculture (USDA) and university scientists.

Warmer temperatures increase water loss to the atmosphere, leading to drier soils. In contrast, higher CO2 levels cause leaf stomatal pores to partly close, lessening the amount of water vapor that escapes and the amount of water plants draw from soil. This new study finds that CO2 does more to counterbalance warming-induced water loss than previously expected. In fact, simulations of levels of warming and CO2 predicted for later this century demonstrated no net change in soil water, and actually increased levels of plant growth for warm-season grasses.

"By combining higher temperatures with elevated CO2 levels in an experiment on actual rangeland, these researchers are developing the scientific knowledge base to help prepare managers of the world's rangelands for what is likely to happen as climate changes in the future," said Edward B. Knipling, administrator of the Agricultural Research Service (ARS), USDA's principal intramural scientific research agency.

The results cover the first four years of the eight-year Prairie Heating and CO2 Enrichment (PHACE) experiment on native northern mixed grass rangeland. The study is being conducted by the ARS Rangeland Resources Research Unit (RRRU) at the High Plains Grasslands Research Station near Cheyenne, Wyo.

ARS plant physiologist Jack Morgan leads the study, which uses both CO2 pipelines and thermal infrared heaters to simulate global warming conditions predicted for the end of the century: 600 parts per million (ppm) of CO2 -- compared to today's average 390 ppm -- and day/night temperatures raised by 3 and 5 degrees Fahrenheit, respectively.

Based on these findings, warmer temperatures would likely play a role in changing the relative success of various grass types. "Only the warm-season grasses had their growth boosted higher by CO2 and warmer temperatures," Morgan said. "If this leads to a competitive advantage for warm-season grasses, it may increase the challenges faced by ranchers who desire cool-season grasses for early-season forage."

Elise Pendall and David Williams at the University of Wyoming at Laramie and Matthew Wallenstein at Colorado State University at Fort Collins also are participating in the study, which will be completed in 2013. Retired ARS soil scientist Bruce Kimball, designer of the infrared heater system, is helping conduct the study. Kimball serves as a research collaborator at the ARS U.S. Arid-Land Agricultural Research Center in Maricopa, Ariz.

Grass-dominated, dry rangelands account for approximately a third of Earth's land surface, providing most of the forage eaten by livestock. This research, the first of its kind on this scale for rangelands, supports the USDA priority of helping farmers and ranchers throughout the United States and the rest of the world best adapt production practices to variable climate patterns.

Morgan said more research is needed to determine how the water-savings effect applies over the long run and in other types of semi-arid rangelands as well as to croplands in semi-arid areas. "It is important to understand that CO2 only offset the direct effects of warming on soil water in this experiment, and that it is unlikely to offset more severe drought due to combined warming and reduced precipitation projected for many regions of the world," he said.

In addition to ARS funding, the research is supported by grants from the National Science Foundation, the U.S. Department of Energy, and USDA's National Institute of Food and Agriculture.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. The original article was written by Don Comis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jack A. Morgan, Daniel R. LeCain, Elise Pendall, Dana M. Blumenthal, Bruce A. Kimball, Yolima Carrillo, David G. Williams, Jana Heisler-White, Feike A. Dijkstra, Mark West. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 2011; DOI: 10.1038/nature10274

Cite This Page:

USDA/Agricultural Research Service. "Rising carbon dioxide could reverse drying effects of higher temperatures on rangelands." ScienceDaily. ScienceDaily, 4 August 2011. <www.sciencedaily.com/releases/2011/08/110803143140.htm>.
USDA/Agricultural Research Service. (2011, August 4). Rising carbon dioxide could reverse drying effects of higher temperatures on rangelands. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2011/08/110803143140.htm
USDA/Agricultural Research Service. "Rising carbon dioxide could reverse drying effects of higher temperatures on rangelands." ScienceDaily. www.sciencedaily.com/releases/2011/08/110803143140.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins