Featured Research

from universities, journals, and other organizations

Supernovae parents found: Clear signatures of gas outflows from stellar ancestors

Date:
August 11, 2011
Source:
Carnegie Institution
Summary:
Observations of Type Ia supernovae has led to the discovery that the universe is expanding at an accelerating rate and the notion of dark energy. However, astronomers do not know for certain how the explosions take place and whether they all share the same origin. Now, a team of researchers has examine 41 of these objects and concluded that there are clear signatures of gas outflows from the supernova ancestors, which are likely not white dwarfs.

Type Ia supernovae are violent stellar explosions whose brightness is used to determine distances in the universe.
Credit: Image courtesy of Carnegie Institution

Type Ia supernovae are violent stellar explosions whose brightness is used to determine distances in the universe. Observing these objects to billions of light years away has led to the discovery that the universe is expanding at an accelerating rate, the foundation for the notion of dark energy. Although all Type Ia supernovae appear to be very similar, astronomers do not know for certain how the explosions take place and whether they all share the same origin. Now, a team of researchers has examined new and detailed observations of 41 of these objects and concluded that there are clear signatures of gas outflows from the supernova ancestors, which do not appear to be white dwarfs.

The research is published in the August 12 issue of Science.

The widely accepted theory is that Type Ia supernovae are thermonuclear explosions of a white dwarf star in a close binary system. There are two competing scenarios for supernova ancestry. In the so-called single-degenerate model, the accompanying star in the binary is a main-sequence star or evolved star. In the competing double-degenerate model, the companion is another white dwarf -- a very dense star in its final evolutionary stage.

"Because we don't know what the things blowing up actually are, we don't quite understand why they should all be so similar," explained coauthor Josh Simon of the Carnegie Observatories. "That raises the possibility that Type Ia supernovae that occurred 7 billion years ago -- the ones that allow us to measure the repulsive force we call dark energy -- might be different in some subtle way from the ones occurring now. Maybe they are a little bit brighter than the ancient ones, for example."

Mark Phillips, also from Carnegie added, "We wanted to get a better understanding of what the stars look like before the explosion to help determine the origin of their brightness. That information will allow us to be sure that there are no errors of this type distorting the dark energy measurements."

The astronomers looked for absorption by sodium atoms in the spectrum of each of the 41 supernovae. Sodium is a telltale sign of cool, neutral gas in the vicinity of the explosion. By measuring the speed of the sodium clouds using the Doppler shift, they determined that the majority of the supernovae show sodium gas moving away from the explosion site and toward Earth.

"If the star system originally contained two white dwarfs before the supernova, then there shouldn't be any sodium," remarked Carnegie's Nidia Morrell. "The fact that we detected the sodium shows that one of the stars must not have been a white dwarf."

The astronomers ruled out other possible sources of the sodium absorption features including interstellar clouds or a galactic-scale wind blown by the host galaxy.

"The low velocities and narrowness of the features suggest that the absorption is from material very close to the supernova that was ejected by the parent system before the explosion. Typically, gas with these characteristics is attributed to the stellar wind blown by red giant companion stars, not white dwarfs," concluded Simon.

The finding is an important first step toward understanding the details of how Type Ia supernovae explode and the origin of their immense luminosity.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Sternberg, A. Gal-Yam, J. D. Simon, D. C. Leonard, R. M. Quimby, M. M. Phillips, N. Morrell, I. B. Thompson, I. Ivans, J. L. Marshall, A. V. Filippenko, G. W. Marcy, J. S. Bloom, F. Patat, R. J. Foley, D. Yong, B. E. Penprase, D. J. Beeler, C. A. Prieto, G. S. Stringfellow. Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features. Science, 2011; 333 (6044): 856 DOI: 10.1126/science.1203836

Cite This Page:

Carnegie Institution. "Supernovae parents found: Clear signatures of gas outflows from stellar ancestors." ScienceDaily. ScienceDaily, 11 August 2011. <www.sciencedaily.com/releases/2011/08/110811142814.htm>.
Carnegie Institution. (2011, August 11). Supernovae parents found: Clear signatures of gas outflows from stellar ancestors. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/08/110811142814.htm
Carnegie Institution. "Supernovae parents found: Clear signatures of gas outflows from stellar ancestors." ScienceDaily. www.sciencedaily.com/releases/2011/08/110811142814.htm (accessed August 30, 2014).

Share This




More Space & Time News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins