Featured Research

from universities, journals, and other organizations

How an 'evolutionary playground' brings plant genes together

Date:
September 9, 2011
Source:
Norwich BioScience Institutes
Summary:
Plants produce a vast array of natural products, many of which we find useful for making things such as drugs. Researchers have recently discovered that the genes producing two of these products in the model plant Arabidopsis are clustered together by an 'evolutionary playground' in the plant's genome. Knowing how these clusters assemble and are controlled will be important for improving and exploiting the production of new natural products.

Plants produce a vast array of natural products, many of which we find useful for making things such as drugs. There are likely to be many other plant natural products that remain undiscovered or under-exploited, and research from The John Innes Centre is uncovering more about the genetics and evolution of natural product pathways in plants. Researchers at JIC have recently discovered that the genes producing two of these products in the model plant Arabidopsis are clustered together, which is extremely rare in plants. An apparent 'evolutionary playground' in the plant's genome seems to have brought the genes together, and knowing how these clusters assemble and are controlled will be important for improving and exploiting the production of new natural products.

Related Articles


Gene clusters are common in bacteria, where genes needed to perform a specific task, such as producing an antibiotic, are grouped together in what are called operons. However in plants and animals, functionally related genes are normally spread throughout the genome. Professor Anne Osbourn of the John Innes Centre, whilst studying a natural antimicrobial compound produced by oats, found that the genes that made this compound were in fact clustered. Her group used the 'signature' of these genes' arrangement to search for other potential clusters, in the model plant Arabidopsis.

Publishing in the journal Proceeding of the National Academy of Sciences, Professor Osbourn and her colleagues at Stanford University and France's Institut National de la Recherche Agronomique (INRA) have now discovered the second of two gene clusters, both producing triterpene compounds. This allows them to look for common features of the gene clusters, giving new insights into how these clusters evolve.

Bacterial operons swap relatively easily between species, but the Arabidopsis gene clusters didn't enter the plant's genomes by this route. Both of the clusters are found in 'dynamic' regions of the genome that are significantly enriched in transposable elements. These areas act like 'evolutionary playgrounds' where recombinations happen more frequently, bringing together different genes. When the gene clusters produce compounds that are useful to the plant, for example in fighting off pests, natural selection favours these clusters. Crucially, in both of the triterpene gene clusters found by the group, the clusters must be maintained as a whole. Losing one part of the cluster leads to the build up of toxic intermediates. This causes an evolutionary pressure to maintain the cluster as a whole, as this increases the chances of the all of the genes being inherited together.

Clustering also allows the genes to be controlled in a coordinated manner, and comparing the gene clusters gave the scientists hints of how this might happen. Both gene clusters show signs that they are regulated by the way the DNA molecule folds or unfolds into chromatin, whilst neighbouring genes outside the clusters don't. Furthermore, it appears that this level of coordinated gene expression has been acquired by the cluster after its assembly.

These insights into the way these gene clusters have evolved and function will be particularly valuable for efforts to fully exploit the potential of plants to produce valuable products. The ever-growing amount of data being generated by genome sequencing projects can be explored further, to try to discover similar gene clusters. For genes that have already been discovered, this information on clustering genes will help in efforts to use synthetic biology to optimise the production of new drugs, herbicides and other plant products.

This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ben Field, Anna-Sophie Fiston-Lavier, Ariane Kemen, Katrin Geisler, Hadi Quesneville, and Anne E. Osbourn. Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proceedings of the National Academy of Sciences, August 29, 2011 DOI: 10.1073/pnas.1109273108

Cite This Page:

Norwich BioScience Institutes. "How an 'evolutionary playground' brings plant genes together." ScienceDaily. ScienceDaily, 9 September 2011. <www.sciencedaily.com/releases/2011/08/110829153406.htm>.
Norwich BioScience Institutes. (2011, September 9). How an 'evolutionary playground' brings plant genes together. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/08/110829153406.htm
Norwich BioScience Institutes. "How an 'evolutionary playground' brings plant genes together." ScienceDaily. www.sciencedaily.com/releases/2011/08/110829153406.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com
Amphipolis Tomb Architraves Reveal Faces

Amphipolis Tomb Architraves Reveal Faces

AFP (Nov. 22, 2014) Faces in an area of mosaics is the latest find by archaeologists at a recently discovered tomb dating back to fourth century BC and the time of Alexander the Great in Greece. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
US Returns Looted Artifacts to Thailand

US Returns Looted Artifacts to Thailand

AFP (Nov. 19, 2014) The United States has returns over 500 vases, bowls, axes, and other ancient artifacts mostly from the Ban Chiang archaeological site which were illegally looted from Thailand decades ago. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins