Featured Research

from universities, journals, and other organizations

Study of metabolites reveals health implications from small molecules

Date:
September 14, 2011
Source:
Wellcome Trust Sanger Institute
Summary:
Researchers have discovered 37 new genetic variants associated with concentrations of metabolites in the blood: many of these match variants associated with diseases such as kidney disease and type 2 diabetes. The team looked for genetic influences on levels of more than 250 compounds in blood, including lipids, sugars, and amino acids. The effects of variants discovered in genome-wide association analyses can be modest and biological understanding poor: this new approach can overcome these problems.

Genetic basis of human metabolic individuality. The 37 genetically determined metabotypes (GDMs) explain a highly relevant amount of the total variation in the studied population and therefore contribute substantially to the genetic part of human metabolic individuality. a. GGDMs are shown colour coded by general metabolic pathways, together with selected associated metabolic traits, highlighting the relationship between gene function and the associated metabolic trait. b. GDMs are presented here colour coded by general metabolic pathways together with selected associated metabolic traits, highlighting the relationship between gene function and the associated metabolic trait metabolic trait GDMs are colour-coded by overlap with associations in previous GWAS with disease (red), intermediate risk factors for disease (yellow) and other traits (green).
Credit: Image courtesy of Wellcome Trust Sanger Institute

Researchers have undertaken the most comprehensive investigation of genetic variance in human metabolism and discovered new insights into a range of common diseases. Their work has revealed 37 new variants that are associated with concentrations of metabolites in the blood. Many of these match variants associated with diseases such as chronic kidney disease, type 2 diabetes and blood clotting.

The team conducted the largest ever study of the human genome for genetic variants associated with metabolites -- the biochemical compounds representing the start or end of metabolic reactions -- using genome wide association analysis. They were searching for genetic influences on levels of more than 250 compounds in people's blood, including lipids, sugars, vitamins, amino acids and many others. They discovered variants that have a significant effect on the levels of these compounds, and hence on the underlying biological and disease processes.

"Our findings provide new insights for many disease-related associations that have been reported in previous studies, including cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, thrombosis and Crohn's disease," says Dr Nicole Soranzo, one of the study's researchers from the Wellcome Trust Sanger Institute. "Often the effects of variants discovered in genome wide association analyses are modest and we perhaps have a poor understanding of the biologic mechanism behind the association. Our approach can overcome these problems and possibly inform individualized therapy/treatment."

In previous studies, scientists have looked at the levels of one or a few metabolic traits; for example, cholesterol levels, or sugar in the blood, that is investigated in the doctor's surgery to help to diagnose disease. The new approach in this work was to assay a much wider range of smaller biochemical compounds, to give as complete a picture as possible of the molecules that are symptoms of disease and those that might contribute to disease.

The hope was that this more complete picture would allow researchers to better understand the function of genetic variants responsible for driving disease. This was the case.

Among the discoveries made by the team was a previously unknown association of mannose, a natural sugar, with diabetes-associated variants; this link suggests a new line of research to examine the role of mannose in diabetes, both as a diagnostic and as part of the disease process.

They also identified a possible mechanism to detoxify substances, which could affect the risk of developing kidney disease. This followed the discovery of a highly significant association with the NAT8 gene.

"These are remarkable findings powered by our method that enables researchers to identify new and potentially relevant metabolic processes and pathways," says Professor Karsten Suhre. Dr Christian Gieger adds: "To improve effectively treatment through biomedicine, we need to put genetics into its biological context. In trying to do this in our study, we have identified new molecules of interest that could be clinically significant." Both are the lead authors from the Helmholtz Center Munich, German Research Centre for Environmental Health.

Their study also discovered variants associated with blood clotting and thrombosis.

"We were able to show that variants in or near three genes are associated with a biochemical modification to peptides, a small protein that controls blood clotting. These same variants are variously associated with an increased risk for heart disease, thrombosis and other similar conditions," says Professor Tim Spector, Director of the TwinsUK twin cohort at the Department of Twin Research and Genetic Epidemiology, King's College London, which provided one of the two study samples. "We speculate that this is a new example of a mechanism that alters blood clotting. This discovery could one day lead to improved treatments."

Additionally, the researchers investigated the association of metabolite levels with drug response and treatment, including statins and thalidomide. They showed that in one case, a variant in a gene called ACE, associated with blood pressure control, could undermine treatment effects. The novel biochemical basis could help to identify possible side effects in drug trials and support development of new formulations to reduce side effects.

The data will be made publicly available as a knowledge-based resource on the internet to aid future studies, and biological, as well as clinical, interpretation of genome wide association studies.


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karsten Suhre, So-Youn Shin, Ann-Kristin Petersen, Robert P. Mohney, David Meredith, Brigitte Wägele, Elisabeth Altmaier, CARDIoGRAM, Panos Deloukas, Jeanette Erdmann, Elin Grundberg, Christopher J. Hammond, Martin Hrabé de Angelis, Gabi Kastenmüller, Anna Köttgen, Florian Kronenberg, Massimo Mangino, Christa Meisinger, Thomas Meitinger, Hans-Werner Mewes, Michael V. Milburn, Cornelia Prehn, Johannes Raffler, Janina S. Ried, Werner Römisch-Margl, Nilesh J. Samani, Kerrin S. Small, H. -Erich Wichmann, Guangju Zhai, Thomas Illig, Tim D. Spector, Jerzy Adamski, Nicole Soranzo, Christian Gieger. Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011; 477 (7362): 54 DOI: 10.1038/Nature10354

Cite This Page:

Wellcome Trust Sanger Institute. "Study of metabolites reveals health implications from small molecules." ScienceDaily. ScienceDaily, 14 September 2011. <www.sciencedaily.com/releases/2011/08/110831155336.htm>.
Wellcome Trust Sanger Institute. (2011, September 14). Study of metabolites reveals health implications from small molecules. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2011/08/110831155336.htm
Wellcome Trust Sanger Institute. "Study of metabolites reveals health implications from small molecules." ScienceDaily. www.sciencedaily.com/releases/2011/08/110831155336.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Genetic Basis of Human Metabolic Individuality Identified; Research May Lead to Highly Targeted, Individualized Therapies

Oct. 26, 2011 — In what is so far the largest investigation of its kind, researchers uncovered a wide range of new insights about common diseases and how they are affected by differences between two persons' ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins