Featured Research

from universities, journals, and other organizations

Climate in the past million years determined greatly by dust in the Southern Ocean

Date:
September 4, 2011
Source:
Universitat Auṭnoma de Barcelona
Summary:
Scientists have quantified dust and iron fluxes deposited in the Antarctic Ocean during the past 4 million years. The research study shows evidence of the close relation between the maximum contributions of dust to this ocean and climate changes occurring in the most intense glaciation periods of the Pleistocene period, some 1.25 million years ago. Data confirms the role of iron in the increase in phytoplankton levels during glacial periods, intensifying the function of this ocean as a carbon dioxide sink.

Livingston Island in the Southern Ocean.
Credit: Image courtesy of NOAA/Vents, Korea Polar Research Institute (KOPRI)

A group of scientists led by researchers from the Universitat Auṭnoma de Barcelona (UAB) and the Swiss Federal Institute of Technology (ETH Zürich) has quantified dust and iron fluxes deposited in the Antarctic Ocean during the past 4 million years. The research study published in Nature evidences the close relation between the maximum contributions of dust to this ocean and climate changes occurring in the most intense glaciation periods of the Pleistocene period, some 1.25 million years ago. Data confirms the role of iron in the increase in phytoplankton levels during glacial periods, intensifying the function of this ocean as a CO2 sink.

Dust, formed by particles of soil, plants, etc. affects the climate by altering the energetic balance of the atmosphere and provides iron and other micronutrients necessary to marine organisms. Scientists considered that dust fluxes deposited by the wind into the Antarctic Ocean increased during glacial periods and that iron fertilisation may have stimulated marine productivity, contributing significantly to the CO2 reduction in the atmosphere during the most recent Pleistocene glacial periods (in the past 800,000 years). However, the magnitude of these effects and their role in the evolution of the climate system had remained unclear.

Records of the period studied in this research work -- the longest and most detailed up to date on the Southern Ocean -- reveal a sharp increase in dust and iron inputs during the Climate Transition of the Middle Pleistocene Epoch (1,250,000 years ago) in which fluxes tripled. This transition marked a global climate change with the beginning of glacial periods lasting 100,000 years, in comparison to the gradual intensification of glacial cycles occurring in the three million years immediately before, when periods lasted 41,000 years.

For the first time results show the close connection between the highest levels of dust deposited in the Antarctic Ocean and the lowest concentrations of CO2 in the atmosphere, which gave way to the appearance of the deep glaciations typical of Earth's recent history. The study indicates that the dust most probably played a key role in fertilising microscopic algae of the Southern Ocean, emphasising its role as a CO2 sink. These microorganisms grow uptaking the CO2 found in the atmosphere and when they die they sink releasing carbon into the depths of the ocean.

For Antoni Rosell Mele, ICREA researcher at the Institute of Environmental Science and Technology of UAB, and Alfredo Martínez Garcia, currently researcher at EHT Zürich who earned his PhD at UAB, the research carried out offers new clues on the causes behind the most intense glaciations of the Pleistocene Epoch, particularly on how interactions between dust with oceanic biology influence CO2 and the climate. It also allows scientists to understand how future changes in atmospheric circulation and the superficial biology of oceans can make the Antarctic Ocean change the efficiency with which it captures and removes carbon dioxide from the atmosphere.

There are in fact initiatives to fertilise the Southern Ocean with iron with the purpose of reproducing the natural process observed during glaciations and reduce today's levels of CO2 in the atmosphere. It is an issue which has generated much controversy. "Although our data indicates that this process occurred naturally during glacial periods, we must take into account that ocean circulation was completely different to what it is now, and this made the role of iron fertilisation more efficient in capturing carbon dioxide from the atmosphere. There are also several unknown aspects of what could happen to marine ecosystems if iron were artificially added in large quantities, and therefore its commercial application continues to be unviable at the moment," researchers conclude.


Story Source:

The above story is based on materials provided by Universitat Auṭnoma de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alfredo Martínez-Garcia, Antoni Rosell-Melé, Samuel L. Jaccard, Walter Geibert, Daniel M. Sigman, Gerald H. Haug. Southern Ocean dust–climate coupling over the past four million years. Nature, 2011; 476 (7360): 312 DOI: 10.1038/nature10310

Cite This Page:

Universitat Auṭnoma de Barcelona. "Climate in the past million years determined greatly by dust in the Southern Ocean." ScienceDaily. ScienceDaily, 4 September 2011. <www.sciencedaily.com/releases/2011/09/110901093240.htm>.
Universitat Auṭnoma de Barcelona. (2011, September 4). Climate in the past million years determined greatly by dust in the Southern Ocean. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/09/110901093240.htm
Universitat Auṭnoma de Barcelona. "Climate in the past million years determined greatly by dust in the Southern Ocean." ScienceDaily. www.sciencedaily.com/releases/2011/09/110901093240.htm (accessed September 23, 2014).

Share This



More Earth & Climate News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) — Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Raw: Protesters Stage Wall Street Climate Sit-in

Raw: Protesters Stage Wall Street Climate Sit-in

AP (Sep. 22, 2014) — A day after over 100,000 people marched against climate change, more than 1,000 activists blocked parts of Manhattan's financial district. Over 100 people, including a person wearing a white polar bear suit, were arrested Monday night. (Sept. 22) Video provided by AP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) — French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com
Ongoing Drought, Fighting Put Somalia at Risk of Famine

Ongoing Drought, Fighting Put Somalia at Risk of Famine

AFP (Sep. 22, 2014) — After a year of poor rains and heavy fighting Somalia is again at risk of famine, just three years after food shortages killed 260,000 people. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins