Featured Research

from universities, journals, and other organizations

Cellular metabolism self-adapts to protect against free radicals

Date:
September 7, 2011
Source:
Max-Planck-Gesellschaft
Summary:
Oxygen-consuming organisms obtain energy through cellular respiration, which is the transformation of carbohydrates and oxygen into carbon dioxide and water. This process also produces toxic oxygen radicals which must be decomposed immediately, as they would otherwise cause damage to cells. Scientists have now discovered a mechanism, with whose help cells can coordinate respiratory activity and the degradation of free radicals. Thus, the cells prepare their metabolism for free radicals before they even arise.

Oxygen-consuming organisms obtain energy through cellular respiration, which is the transformation of carbohydrates and oxygen into carbon dioxide and water. This process also produces toxic oxygen radicals which must be decomposed immediately, as they would otherwise cause damage to cells. Scientists from the Max Planck Institute for Molecular Genetics in Berlin have now discovered a mechanism, with whose help cells can coordinate respiratory activity and the degradation of free radicals. Thus, the cells prepare their metabolism for free radicals before they even arise.

Cellular respiration is a very efficient process through which a lot of energy is generated from a few sugar molecules and oxygen. However, up to two percent of the oxygen used in this process is transformed into superoxide, a free radical that is toxic to cells. A considerable proportion of this superoxide evades the respiratory chain of the mitochondria and poses a threat to biological macromolecules like DNA, RNA, proteins and fatty acids. However, evolution has equipped eukaryotic cells with comprehensive mechanisms that can decompose free radicals which arise in the cell and therefore prevent damage to the cell. These mechanisms work extremely efficiently and are well coordinated so that, contrary to popular belief, the treatment of healthy tissue with natural or synthetic antioxidants can disrupt the natural balance and, at worst, damage cells and accelerate the aging process.

Researchers at the Max Planck Institute for Molecular Genetics compared respiring and non-respiring yeast cells. When respiration was activated, there was a direct increase in the cells' tolerance to oxidised substances; however, contrary to expectation, this was not accompanied by a rise in the concentration of free radicals. This proved that respiring cells are entirely capable of dealing with the increased formation of free radicals and keeping them at the level of the non-respiring cells.

According to the researchers, a hitherto undiscovered feedback mechanism located within a central metabolic pathway is responsible for this process. The carbohydrate-degrading enzyme pyruvate kinase regulates the respiratory activity of yeast cells. It is less active in respiring cells and this leads to the accumulation of its substrate phosphoenolpyruvate. The accumulation of this substance inhibits another glycolytic enzyme, triosephosphate isomerase. The researchers were already very familiar with this enzyme: they had previously discovered that a low level of activity of this enzyme provides protection against free radicals. "If we block this feedback mechanism artificially while activating respiration, the free radical concentration increased significantly and damaged proteins and mitochondria. This tells us that cells can predict when the radical production will rise and adapt their metabolism before the free radicals are even produced," explains Markus Ralser, researcher at the Max Planck Institute for Molecular Genetics and the University of Cambridge.

This discovery may prove to be of particular significance for cancer research. The enzyme pyruvate kinase is partly responsible for the fact that tumour cells usually respire less and thus have a higher rate of sugar metabolism than healthy tissue. This effect is named after Otto Warburg, who was the first scientist to demonstrate this higher rate of sugar metabolism in cancer cells in the 1920s. The Max Planck researchers hope that it will be possible to use this newly discovered feedback mechanism to cause targeted nutrition deficiency in tumour cells and render them more vulnerable in this way.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nana-Maria Grόning, Mark Rinnerthaler, Katharina Bluemlein, Michael Mόlleder, Mirjam MC, Wamelink, Hans Lehrach, Cornelis Jakobs, Michael Breitenbach, Markus Ralser. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metabolism, 2011; 14 (3): 415-427 DOI: 10.1016/j.cmet.2011.06.017

Cite This Page:

Max-Planck-Gesellschaft. "Cellular metabolism self-adapts to protect against free radicals." ScienceDaily. ScienceDaily, 7 September 2011. <www.sciencedaily.com/releases/2011/09/110907121233.htm>.
Max-Planck-Gesellschaft. (2011, September 7). Cellular metabolism self-adapts to protect against free radicals. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2011/09/110907121233.htm
Max-Planck-Gesellschaft. "Cellular metabolism self-adapts to protect against free radicals." ScienceDaily. www.sciencedaily.com/releases/2011/09/110907121233.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) — A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins