Featured Research

from universities, journals, and other organizations

New complex offers potentially safer alternative for gene therapy delivery

Date:
September 12, 2011
Source:
Springer Science+Business Media
Summary:
Spontaneous ordering of DNA fragments in a special matrix holds the key to creating non-toxic gene therapy delivery vectors, according to a new study.

Spontaneous ordering of DNA fragments in a special matrix holds the key to creating non-toxic gene therapy delivery vectors, according to a study recently published in the European Physical Journal E.

Scientists from the CNRS Paul Pascal Research Centre, an institute of the University of Bordeaux, France, and colleagues from the Institute of Physics at the University of Sao Paolo, have created a complex system designed to hold DNA fragments in solution between the hydrophilic layers of a matrix of fatty substances (also known as lipids) combined with a surfactant (used to soften the layers' rigidity). One possible application that has yet to be tested is gene therapy.

Although gene therapy was initially delivered using viral vectors, recent attempts at devising alternative vectors have exploited positively charged lipids to form complex structures holding DNA fragments with electrostatic forces. However the positively charged ions, known as cations, used in this type of vector have proven toxic for human cells.

Until now, only positively charged fatty substance were thought capable of holding DNA in a complex vector. The authors of this study have proved otherwise by creating an electrically neutral matrix, structured like a multi-layered cake, which holds the DNA fragments at a high concentration in solution between the layers.

The authors found that DNA fragments within the complex self-organise over time. These fragments spontaneously align parallel to one another and form rectangular and hexagonal structures across the layers. The change of atomic-level interactions within the layers and the appearance of interactions at the interface between the layers and the DNA molecules may explain the emergence of ordered structures at high DNA concentrations.

The next step of this research involves elucidating the precise physical forces that hold the complex together. Applications of such technology go beyond gene therapy vector design, as the same principle can be applied for the delivery of other particles such as chemical drugs.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. R. Teixeira da Silva, E. Andreoli de Oliveira, A. Fιvrier, F. Nallet, L. Navailles. Supramolecular polymorphism of DNA in non-cationic Lα lipid phases. The European Physical Journal E, 2011; 34 (8) DOI: 10.1140/epje/i2011-11083-x

Cite This Page:

Springer Science+Business Media. "New complex offers potentially safer alternative for gene therapy delivery." ScienceDaily. ScienceDaily, 12 September 2011. <www.sciencedaily.com/releases/2011/09/110908081005.htm>.
Springer Science+Business Media. (2011, September 12). New complex offers potentially safer alternative for gene therapy delivery. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2011/09/110908081005.htm
Springer Science+Business Media. "New complex offers potentially safer alternative for gene therapy delivery." ScienceDaily. www.sciencedaily.com/releases/2011/09/110908081005.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) — Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) — It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins