Featured Research

from universities, journals, and other organizations

Crystal structure shows how motor protein works

Date:
September 21, 2011
Source:
University of California - Davis
Summary:
The crystal structure of the dynamin protein -- one of the molecular machines that makes cells work -- has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

The crystal structure of the dynamin protein -- one of the molecular machines that makes cells work -- has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

"It's a really cool structure," said Jodi Nunnari, professor and chair of molecular and cellular biology at UC Davis and senior author of the paper, is published Sept. 18 in the journal Nature. "This is a really important class of molecules for regulating membrane dynamics."

The detailed structure reveals exactly how the dynamin protein can form large assemblies that pinch off bubbles, or vesicles, from cell membranes. These vesicles allow a cell to "eat" proteins, liquids or other items from the outside, compartmentalize them and move them around within itself.

Marijn Ford, a postdoctoral scholar in Nunnari's laboratory, mapped the crystal structure of dynamin-1 in collaboration with Simon Jenni, a research fellow at Harvard University.

Dynamin belongs to a large family of proteins that, in the right conditions, can self-assemble into larger structures and generate force. Those properties of self-assembly and movement can be harnessed in the cell for different functions.

Dynamin-1 itself is involved in making vesicles in nerve cells at the points where nerves form connections, or synapses, with each other. Nerve cells communicate through chemical messengers (neurotransmitters) that are released from and taken up by vesicles. Altering the balance of these messengers can affect mental function. For example, an important class of antidepressant drugs works by affecting the uptake of the neurotransmitter serotonin.

The new crystal structure shows exactly how the individual dynamin proteins can line up to form a helix, and then move by ratcheting alongside each other.

It also shows that part of the protein can interact with lipids in cell membranes. That could allow different types of dynamin protein to interact with subtly different types of membrane, specializing their function.

Understanding these miniature motors also might make it possible one day to engineer cells that can do new and different tasks, Nunnari said.

The work was funded by grants from the National Institutes of Health and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marijn G. J. Ford, Simon Jenni, Jodi Nunnari. The crystal structure of dynamin. Nature, 2011; DOI: 10.1038/nature10441

Cite This Page:

University of California - Davis. "Crystal structure shows how motor protein works." ScienceDaily. ScienceDaily, 21 September 2011. <www.sciencedaily.com/releases/2011/09/110918144928.htm>.
University of California - Davis. (2011, September 21). Crystal structure shows how motor protein works. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/09/110918144928.htm
University of California - Davis. "Crystal structure shows how motor protein works." ScienceDaily. www.sciencedaily.com/releases/2011/09/110918144928.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins