Featured Research

from universities, journals, and other organizations

Cell-specific mechanism-based gene therapy approach to treat retinitis pigmentosa

Date:
October 1, 2011
Source:
Society for Experimental Biology and Medicine
Summary:
Scientists have achieved temporary functional preservation of photoreceptors in a mouse model for retinitis pigmentosa using novel bipartite gene therapy.

In a paper published in the October 2011 issue of Experimental Biology and Medicine, a team of researchers at Columbia University Medical Center led by Stephen Tsang, MD, Ph.D have achieved temporary functional preservation of photoreceptors in a mouse model for retinitis pigmentosa (RP) using novel bipartite gene therapy.

RP is a heterogeneous disorder characterized by progressive degeneration of rod photoreceptors (which mediate night vision) causing night blindness and eventually total blindness. About 36,000 cases of simplex and familial RP worldwide are caused by mutant phosphodiesterase (PDE6). Says Dr. Tsang,

"Victor McKusick's Mendelian Inheritance in Man catalog has approximately 4,000 genetic disease entries, but only 4 of these are already curable by gene-therapy approaches. This bipartite vector, which allows cell-specific delivery of both the normal gene and shRNA to knockdown other genes in the pathway, represents a strategy that may help cure many more retinal degenerations. Degeneration of rod photoreceptors also affects approximately 9 million Americans with age-related macular degeneration. Strategies to save photoreceptors in mouse models of RP may be applicable to that disease as well."

In spite of this high prevalence, the interplay between defective PDE metabolism and RP pathogenesis remains poorly understood. In several mouse models for RP, defects in the PDE6B enzyme result in increased levels of the signaling molecules cGMP (mediated by GUCY2E cyclase) and Ca2+ (mediated by the CNGA1 channel).

Several aspects of the EBM report are innovative. It not only tackles the lack of functional PDE6β (by augmenting function with conventional gene replacement), but simultaneously counteracts the central biochemical impact of that lost function by decreasing abnormally accumulated cGMP and Ca2+. Furthermore, they used a tissue-specific promoter to achieve cell-specific expression of the transduced genes, which is unusual for shRNA delivery.

The researchers at Columbia developed three different lentiviral vectors, each of them designed to deliver wild-type Pde6b cDNA and one of two shRNAs. One vector delivered the cDNA and GUCY2E shRNA to reduce cGMP levels; another vector delivered the wild-type cDNA and CNGA1 shRNA to reduce Ca2+ levels; the third delivered the cDNA and the Gucy2e shRNA with a tissue-specific promoter. The bipartite approach was conceived as a way to improve therapeutic efficacy over that of a single-therapy approach, which was tested in an earlier project from Dr. Tsang's lab. While the current project did not show improvement over their previous work, the researchers are optimistic that bipartite delivery may represent an important resource in future explorations of gene therapy in the eye and other tissues types.

Typical existing shRNA vector systems use the RNA polymerase III promoter, which is expressed in essentially all cell types, to drive expression of the transduced gene. However, expression of shRNA targeting GUCY2E in cone photoreceptors, which mediates color vision, would have unwanted and deleterious effects on vision. To achieve rod-specific expression of the shRNA, the researchers in this work embedded Gucy2e shRNA into the Pol II transcription unit of pre-miR34, which is expressed solely in rods. Similar methods can be used to target different tissues, so this method may have wide applicability.

The testing of shRNA therapeutic approaches in Pde6bH620Q mice should facilitate pre-clinical therapeutic evaluation of retinitis pigmentosa. Lessons learned from the proposed studies will eventually be translated into strategies for treatment trials in larger animal models of PDE6β deficiency, such as Irish Setter dogs, before seeing application in human therapeutics.

Dr. Steve Goodman, Editor-in-Chief of Experimental Biology and Medicine said, "Researchers at Columbia University Medical Center led by Stephen Tsang, MD, Ph.D have used a unique gene therapy approach to preserve photoreceptors and prolong functional vision in a mouse model of retinitis pigmentosa (RP). There work offers the promise of a future gene therapy cure for RP."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Tosi, J. Sancho-Pelluz, R. J. Davis, C. W. Hsu, K. V. Wolpert, J. D. Sengillo, C.-S. Lin, S. H. Tsang. Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. Experimental Biology and Medicine, 2011; 236 (10): 1211 DOI: 10.1258/ebm.2011.011053

Cite This Page:

Society for Experimental Biology and Medicine. "Cell-specific mechanism-based gene therapy approach to treat retinitis pigmentosa." ScienceDaily. ScienceDaily, 1 October 2011. <www.sciencedaily.com/releases/2011/09/110930153050.htm>.
Society for Experimental Biology and Medicine. (2011, October 1). Cell-specific mechanism-based gene therapy approach to treat retinitis pigmentosa. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2011/09/110930153050.htm
Society for Experimental Biology and Medicine. "Cell-specific mechanism-based gene therapy approach to treat retinitis pigmentosa." ScienceDaily. www.sciencedaily.com/releases/2011/09/110930153050.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
101-Year-Old Working Man Has All The Advice You Need

101-Year-Old Working Man Has All The Advice You Need

Newsy (Aug. 19, 2014) Herman Goldman has worked at the same lighting store for almost 75 years. Find out his secrets to a happy, productive life. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
American Ebola Patient Apparently Improving, Outbreak Is Not

American Ebola Patient Apparently Improving, Outbreak Is Not

Newsy (Aug. 19, 2014) Nancy Writebol, an American missionary who contracted Ebola, is apparently getting better, according to her husband. The outbreak, however, is not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins