Featured Research

from universities, journals, and other organizations

Aquatic fish jump into picture of evolutionary land invasion

Date:
October 9, 2011
Source:
Northern Arizona University
Summary:
Research sometimes means looking for one thing and finding another. Such was the case when biology professor Alice Gibb and her research team witnessed a small amphibious fish, the mangrove rivulus, jump with apparent skill and purpose out of a small net and back into the water. This was no random flop, like you might see from a trout that's just been landed. The rivulus seemed to know what it was doing.

The time-elapsed image above, taken by researchers at Northern Arizona University, shows the mosquitofish's ability to move outside of water with apparent skill and purpose. The study suggests that vertebrates may have invaded land more frequently than previously thought
Credit: Image courtesy of Northern Arizona University

Research sometimes means looking for one thing and finding another. Such was the case when biology professor Alice Gibb and her research team at Northern Arizona University witnessed a small amphibious fish, the mangrove rivulus, jump with apparent skill and purpose out of a small net and back into the water. This was no random flop, like you might see from a trout that's just been landed. The rivulus seemed to know what it was doing.

They hadn't expected to see that behavior, even from a fish known to spend time out of the water. So before long, what began as a study on the evolution of feeding behavior was shifted to a study of how fish behave when stranded on land. And considering what is implied by the truism "like a fish out of water," the results came as another surprise.

Some fully aquatic fishes, as the author's video clips show (see: http://jan.ucc.nau.edu/acg/video.html), also can jump effectively on land even without specialized anatomical attributes. This has significant implications for evolutionary biology, Gibb said, because the finding implies that "the invasion of the land by vertebrates may have occurred much more frequently than has been previously thought."

The study is summarized in a paper, "Like a Fish out of Water: Terrestrial Jumping by Fully Aquatic Fishes," that appears online in the JEZ A: Ecological Genetics and Physiology. Gibb said the study "supports a big-picture theory in evolution," which is that the nervous system, in its control of bones and muscles, can allow a new behavior to appear without necessarily bringing about a physical change.

In the case of aquatic fish, Gibb said, "This shows that you don't have to have legs or rigid pectoral fins to move around on land. So if you go back and look at the fossil record to try to say which fish could move around on land, you'd have a hard time knowing for sure."

The original feeding study began with guppies, then moved to a relative, the mangrove rivulus. Once the rivulus exhibited the tail-flip jumping maneuver, Gibb shifted the focus of the research. Eventually, the guppy came back into the picture. Literally.

"When you do a study like this, you have to ask what your control is," Gibb said. "If a known amphibious fish is a good jumper, then what's a bad jumper?"

Enter the guppy, a fully aquatic fish.

"The guppy jumped almost as well as the amphibious fish did," Gibb said. "And no one has ever suggested that a guppy is an amphibious fish." As a result, "we put everything we could get our hands on" in front of a high-speed camera, Gibb said. Some of those additional subjects included the mosquitofish, which has been introduced into tributaries of Oak Creek, and a common pet store zebra fish, which is a very distant relative of guppies and mosquitofish.

The mosquitofish "has become our lab rat," Gibb said. "It's accessible, it comes from a group that has other jumpers, and it's been reported that this fish jumps out of the water to get away from predators and then jumps back in."

That particular escape behavior, Gibb said, has never been filmed. Similar stories about other fish add to mostly anecdotal literature on the topic that "tends to be old and very diffuse."

Today's high-speed video systems give Gibb an opportunity to change that. What the cameras reveal is that both species produce a coordinated maneuver in which the fish curls its head toward the tail and then pushes off the ground to propel itself through the air.

Gibb and her team have discussed going into the field to capture video of fish performing this behavior in the wild. But for now Gibb and her colleagues are endeavoring to determine if there is directionality to voluntary locomotion on land and to investigate the genetic basis of the jumping behavior.

"Maybe fishes that are very good at jumping are poor swimmers," Gibb said.. "We want to look at the compromises that may have been made to favor one behavior over another."


Story Source:

The above story is based on materials provided by Northern Arizona University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alice C. Gibb, Miriam A. Ashley-Ross, Cinnamon M. Pace, John H. Long. Fish out of water: terrestrial jumping by fully aquatic fishes. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2011; DOI: 10.1002/jez.711

Cite This Page:

Northern Arizona University. "Aquatic fish jump into picture of evolutionary land invasion." ScienceDaily. ScienceDaily, 9 October 2011. <www.sciencedaily.com/releases/2011/10/111005110231.htm>.
Northern Arizona University. (2011, October 9). Aquatic fish jump into picture of evolutionary land invasion. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2011/10/111005110231.htm
Northern Arizona University. "Aquatic fish jump into picture of evolutionary land invasion." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005110231.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins