Featured Research

from universities, journals, and other organizations

Last universal common ancestor more complex than previously thought

Date:
October 5, 2011
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists call it LUCA, the Last Universal Common Ancestor, but they don't know much about this great-grandparent of all living things. Many believe LUCA was little more than a crude assemblage of molecular parts, a chemical soup out of which evolution gradually constructed more complex forms. Some scientists still debate whether it was even a cell. New evidence suggests that LUCA was a sophisticated organism after all, with a complex structure recognizable as a cell, researchers report.

What might have been in Earth's ancient 'chemical soup'? Scientists don't know much about LUCA, the Last Universal Common Ancestor, the great-grandparent of all living things. Many believe LUCA was little more than a crude assemblage of molecular parts, a chemical soup out of which evolution gradually constructed more complex forms. New evidence suggests that LUCA was a sophisticated organism, with a complex structure recognizable as a cell.
Credit: © Dave / Fotolia

Scientists call it LUCA, the Last Universal Common Ancestor, but they don't know much about this great-grandparent of all living things. Many believe LUCA was little more than a crude assemblage of molecular parts, a chemical soup out of which evolution gradually constructed more complex forms. Some scientists still debate whether it was even a cell.

Related Articles


New evidence suggests that LUCA was a sophisticated organism after all, with a complex structure recognizable as a cell, researchers report. Their study appears in the journal Biology Direct.

The study builds on several years of research into a once-overlooked feature of microbial cells, a region with a high concentration of polyphosphate, a type of energy currency in cells. Researchers report that this polyphosphate storage site actually represents the first known universal organelle, a structure once thought to be absent from bacteria and their distantly related microbial cousins, the archaea. This organelle, the evidence indicates, is present in the three domains of life: bacteria, archaea and eukaryotes (plants, animals, fungi, algae and everything else).

The existence of an organelle in bacteria goes against the traditional definition of these organisms, said University of Illinois crop sciences professor Manfredo Seufferheld, who led the study.

"It was a dogma of microbiology that organelles weren't present in bacteria," he said. But in 2003 in a paper in the Journal of Biological Chemistry, Seufferheld and colleagues showed that the polyphosphate storage structure in bacteria (they analyzed an agrobacterium) was physically, chemically and functionally the same as an organelle called an acidocalcisome (uh-SID-oh-KAL-sih-zohm) found in many single-celled eukaryotes.

Their findings, the authors wrote, "suggest that acidocalcisomes arose before the prokaryotic (bacterial) and eukaryotic lineages diverged." The new study suggests that the origins of the organelle are even more ancient.

The study tracks the evolutionary history of a protein enzyme (called a vacuolar proton pyrophosphatase, or V-H+PPase) that is common in the acidocalcisomes of eukaryotic and bacterial cells. (Archaea also contain the enzyme and a structure with the same physical and chemical properties as an acidocalcisome, the researchers report.)

By comparing the sequences of the V-H+PPase genes from hundreds of organisms representing the three domains of life, the team constructed a "family tree" that showed how different versions of the enzyme in different organisms were related. That tree was similar in broad detail to the universal tree of life created from an analysis of hundreds of genes. This indicates, the researchers said, that the V-H+PPase enzyme and the acidocalcisome it serves are very ancient, dating back to the LUCA, before the three main branches of the tree of life appeared.

"There are many possible scenarios that could explain this, but the best, the most parsimonious, the most likely would be that you had already the enzyme even before diversification started on Earth," said study co-author Gustavo Caetano-Anollιs, a professor of crop sciences and an affiliate of the Institute for Genomic Biology at Illinois. "The protein was there to begin with and was then inherited into all emerging lineages."

"This is the only organelle to our knowledge now that is common to eukaryotes, that is common to bacteria and that is most likely common to archaea," Seufferheld said. "It is the only one that is universal."

The study lends support to a hypothesis that LUCA may have been more complex even than the simplest organisms alive today, said James Whitfield, a professor of entomology at Illinois and a co-author on the study.

"You can't assume that the whole story of life is just building and assembling things," Whitfield said. "Some have argued that the reason that bacteria are so simple is because they have to live in extreme environments and they have to reproduce extremely quickly. So they may actually be reduced versions of what was there originally. According to this view, they've become streamlined genetically and structurally from what they originally were like. We may have underestimated how complex this common ancestor actually was."

The study team also included Kyung Mo Kim, of the Korea Research Institute of Bioscience and Biotechnology; and Alejandro Valerio, of the Museum of Biological Diversity in Columbus, Ohio.

The National Institute of Allergy and Infectious Diseases and the National Science Foundation provided funding for this study.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manfredo Seufferheld et al. Evolution of Vacuolar Proton Pyrophosphatase Domains and Volutin Granules: Clues Into the Early Evolutionary Origin of the Acidocalcisomes. Biology Direct, 2011 (in press)

Cite This Page:

University of Illinois at Urbana-Champaign. "Last universal common ancestor more complex than previously thought." ScienceDaily. ScienceDaily, 5 October 2011. <www.sciencedaily.com/releases/2011/10/111005112145.htm>.
University of Illinois at Urbana-Champaign. (2011, October 5). Last universal common ancestor more complex than previously thought. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2011/10/111005112145.htm
University of Illinois at Urbana-Champaign. "Last universal common ancestor more complex than previously thought." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005112145.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins