Featured Research

from universities, journals, and other organizations

Progression of lung fibrosis blocked in mouse model

Date:
October 6, 2011
Source:
University of California - San Diego
Summary:
A new study may lead to a way to prevent the progression, or induce the regression, of lung injury that results from use of the anti-cancer chemotherapy drug bleomycin. Pulmonary fibrosis caused by this drug, as well as idiopathic pulmonary fibrosis from unknown causes, affect nearly five million people worldwide. No therapy is known to improve the health or survival of patients.

A study by researchers at the University of California, San Diego School of Medicine may lead to a way to prevent the progression, or induce the regression, of lung injury that results from use of the anti-cancer chemotherapy drug Bleomycin. Pulmonary fibrosis caused by this drug, as well as Idiopathic Pulmonary Fibrosis (IPF) from unknown causes, affect nearly five million people worldwide. No therapy is known to improve the health or survival of patients.

Related Articles


Their research shows that the RSK-C/EBP-Beta phosphorylation pathway may contribute to the development of lung injury and fibrosis, and that blocking this phosphorylation -- a regulatory mechanism in which proteins and receptors are switched on or off -- improved Bleomycin-induced lung fibrosis in mice. The study appears online Oct. 5 in PLoS ONE.

Bleomycin is a common chemotherapy drug used to treat many forms of cancer, according to study authors Martina Buck, PhD, associate professor of medicine, and Mario Chojkier, MD, professor of medicine, both researchers at UC San Diego Moores Cancer Center and the VA San Diego Healthcare System. "Unfortunately, use of Bleomycin has damaging side effects, including lung fibrosis. We are hopeful that this discovery could provide a way to stop such lung damage so that cancer patients could better tolerate this chemotherapy," said Buck.

The downstream molecular mechanism that causes Bleomycin-induced lung fibrosis remained unknown. The scientists set out to identify the specific signaling involving a single amino acid within a specific domain of one protein that could be blocked the half the progression of such injury, in order to design effective targeted therapeutics.

They found that blocking RSK phosphorylation of a binding protein called C/EBP-Beta on the RSK macromolecule Thr217 with either a single point mutation or a blocking peptide ameliorated the progression of lung injury and fibrosis induced by Bleomycin in mice.

"We hypothesized that this pathway was critical given similarities between liver and lung fibrogenesis. RSK plays an important role in both the macrophage inflammatory function and survival of activated liver myofibroblasts -- cells that contribute to maintenance and tissue metabolism," said Buck. "Therefore, we proposed that a similar signaling mechanism is also responsible for lung injury and fibrosis."

By identifying the peptide that shuts down this process, the researchers were essentially able to sequester a small piece of an important regulatory protein, C/EBP Beta, responsible for fibrosis, thereby stopping phosphorylation. "Basically, the kinase protein gets hung up, trying again and again -- unsuccessfully -- to 'turn on' the fibrous growth," Buck added.

In addition, phosphorylation of human C/EBP-Beta was induced in human lung fibroblasts in culture and in situ in lungs of patients with severe lung fibrosis, but not in control lungs, suggesting that this signaling pathway may be also relevant in human lung injury and fibrosis.

The researchers add that it is premature to assess whether this pathway will provide an effective therapeutic target. However, blocking progression of lung fibrosis could decrease the need for lung transplantation, since IPF is the main indication for lung transplants worldwide.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Debra Kain. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martina Buck, Mario Chojkier. C/EBPβ-Thr217 Phosphorylation Signaling Contributes to the Development of Lung Injury and Fibrosis in Mice. PLoS ONE, 2011; 6 (10): e25497 DOI: 10.1371/journal.pone.0025497

Cite This Page:

University of California - San Diego. "Progression of lung fibrosis blocked in mouse model." ScienceDaily. ScienceDaily, 6 October 2011. <www.sciencedaily.com/releases/2011/10/111005172645.htm>.
University of California - San Diego. (2011, October 6). Progression of lung fibrosis blocked in mouse model. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2011/10/111005172645.htm
University of California - San Diego. "Progression of lung fibrosis blocked in mouse model." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005172645.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins