Featured Research

from universities, journals, and other organizations

Uncharted territory: Scientists sequence the first carbohydrate biopolymer

Date:
October 15, 2011
Source:
Rensselaer Polytechnic Institute
Summary:
For the first time ever, a team of researchers has announced the sequence of a complete complex carbohydrate biopolymer. The surprising discovery provides the scientific and medical communities with an important and fundamental new view of these vital biomolecules, which play a role in everything from cell structure and development to disease pathology and blood clotting.

Structure of the bikunin: The portion on the left corresponds to the sugar part of the molecule, the sequence of which was determined in the current study. The portion on the right corresponds to the protein part of bikunin.
Credit: Rensselaer Polytechnic Institute

DNA and protein sequencing have forever transformed science, medicine, and society. Understanding the structure of these complex biomolecules has revolutionized drug development, medical diagnostics, forensic science, and our understanding of evolution and development. But, one major molecule in the biological triumvirate has remained largely uncharted: carbohydrate biopolymers.

Related Articles


Today, for the first time ever, a team of researchers led by Robert Linhardt of Rensselaer Polytechnic Institute has announced in the October 9 Advanced Online Publication edition of the journal Nature Chemical Biology the sequence of a complete complex carbohydrate biopolymer. The surprising discovery provides the scientific and medical communities with an important and fundamental new view of these vital biomolecules, which play a role in everything from cell structure and development to disease pathology and blood clotting.

The paper is titled "The proteoglycan bikunin has a defined sequence."

"Carbohydrate biopolymers, known as glycosaminoglycans, appear to be really important in how cells interact in higher organisms and could explain evolutionary differences and how development is driven. We also know that carbohydrate chains respond to disease, injury, and changes in the environment," said Linhardt, who is the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer. "In order to understand how and why this all happens, we first need to know their structure. And today, at least for the simplest glycosaminoglycan structure, we can now do this."

The first glycosaminoglycan sequenced was obtained from bikunin. Bikunin is a proteoglycan, a protein to which a single glycosaminoglycan chain is attached. Unlike less sophisticated carbohydrate biopolymers, such as starch and cellulose, the proteoglycans are decorated with structurally complex carbohydrates that enable them to perform more sophisticated and defined roles in the body. Bikunin, for example, is a natural anti-inflammatory that is used as a drug for the treatment of acute pancreatitis in Japan. It has the simplest chemical structure of any proteoglycan. Linhardt views the discovery of the structure of bikuin as the first step on the ladder to the discovery of the structure of more complex proteoglycans.

"The first genome sequences of DNA were on the simplest organisms such as bacteria. Once the technology was developed it ultimately led to the sequencing of the human genome," he said. "In our efforts to sequence carbohydrate biopolymers we don't yet know if the defined structure we observe for this simple protoglycan will hold for much more complex proteoglycans."

But, looking for structure in more complex proteoglycans will be among the next steps in the research for Linhardt and his team. The search for structure could help put to rest a long-running debate in the scientific community as to whether complex carbohydrate biopolymers require a defined structure to function.

"Despite all that is known about glycan formation, our understanding has not yet been deep enough to infer sequence or even determine if sequence occurs," Linhardt said. "These findings represent a new way of looking at these complex biomolecules as ordered structures."

Linhardt's research into carbohydrate sequencing began 30 years ago. In his previous work, he determined that some order existed in at least a portion of some carbohydrate biopolymers, but it did not represent the entire finished puzzle.

"Previously, we could see a pattern, but we could not see if all the chains were playing the same music. The tools did not yet exist. Now we can recognize it as a symphony."

To uncover the entire structure, Linhardt and his team, which was led by his doctoral student Mellisa Ly, borrowed a technique from the field of protein research called the proteomics top-down approach. As opposed to the bottom-up approach that first breaks apart a complex biopolymer into pieces and then rebuilds it piece by piece like a jigsaw puzzle, the top-down approach used by Linhardt and colleagues allows the researcher to picture the whole intact puzzle. This can only be accomplished with some of the most sophisticated technology available to the scientific community today, including very high-powered mass spectrometers.

Linhardt used a mass spectrometer located in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS) to make his initial discoveries, and had these results independently confirmed on a separate and higher-level spectrometer at the University of Georgia. Mass spectrometers break down a molecule into separate charged particles or ions. These ions can then be categorized and analyzed based on their mass-to-charge ratio. These ratios then allow for sequencing of the entire molecule.

"This was truly the convergence of really sophisticated spectroscopy and its application to biology," Linhardt said. "We were fortunate to have a lot of time to play with the instrument at CBIS to understand its capabilities."

Beyond the technology it also took faith and determination. According to Linhardt, "It takes a student that is willing to try something even when the odds are pretty low. If it doesn't work, you make incremental progress. If it does work, you can make a great discovery. But, from the beginning you need to be a believer that it is worth taking the chance because it takes a lot of hard work in the lab."

And the odds weren't in Linhardt's favor. Despite being the most simple of proteoglycans, there were still 290 billion different possible sequences for the molecule.

"The first sample we looked at, we got the structure," Linhardt said. "In the end we did 15 chains and they all came back playing the same exact symphony."

The research is funded by the National Institutes of Health.

Linhardt and Ly were joined in the research by Tatiana Laremore of Rensselaer; Franklin Leach and Jonathan Amster of the University of Georgia; and Toshihiko Toida of Chiba University in Japan.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mellisa Ly, Franklin E Leach, Tatiana N Laremore, Toshihiko Toida, I Jonathan Amster, Robert J Linhardt. The proteoglycan bikunin has a defined sequence. Nature Chemical Biology, 2011; DOI: 10.1038/nchembio.673

Cite This Page:

Rensselaer Polytechnic Institute. "Uncharted territory: Scientists sequence the first carbohydrate biopolymer." ScienceDaily. ScienceDaily, 15 October 2011. <www.sciencedaily.com/releases/2011/10/111011112757.htm>.
Rensselaer Polytechnic Institute. (2011, October 15). Uncharted territory: Scientists sequence the first carbohydrate biopolymer. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/10/111011112757.htm
Rensselaer Polytechnic Institute. "Uncharted territory: Scientists sequence the first carbohydrate biopolymer." ScienceDaily. www.sciencedaily.com/releases/2011/10/111011112757.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins