Featured Research

from universities, journals, and other organizations

A protein shows plants the oxygen concentration of their surroundings

Date:
October 23, 2011
Source:
Max Planck Institute of Molecular Plant Physiology
Summary:
Plants need water to grow, but every hobby gardener knows that you shouldn’t carry this to excess either. During waterlogging or flooding, plants can’t take up enough oxygen that they urgently need for their cellular respiration and energy production. Plants respond to this state of hypoxia with the activation of certain genes that help them cope with the stress. Until now it was unclear how plants are sensing the oxygen concentration. Recent experiments show that under hypoxia a protein that can activate genes, a so-called transcription factor, is released from the cell membrane to accumulate in the nucleus and trigger the expression of stress response genes.

Flood. Scientists observed that plants with an overexpression of RAP2.12 show an enhanced tolerance to submergence and a better recovery after flooding events.
Credit: © Ewald Frφch / Fotolia

Plants need water to grow, but every hobby gardener knows that you shouldn’t carry this to excess either. During waterlogging or flooding, plants can’t take up enough oxygen that they urgently need for their cellular respiration and energy production. Plants respond to this state of hypoxia with the activation of certain genes that help them cope with the stress. Until now it was unclear how plants are sensing the oxygen concentration. Recent experiments show that under hypoxia a protein that can activate genes, a so-called transcription factor, is released from the cell membrane to accumulate in the nucleus and trigger the expression of stress response genes.

Although plants produce oxygen via photosynthesis, in darkness they rely on external oxygen supply just like humans and animals. If the plants are cut off from oxygen supply, as a result of flooding for example, the energy production in the cells comes to a halt and the plants have to adjust their metabolism to the changed conditions. Hitherto, little was known about the way organisms sense the oxygen concentration of their surroundings. According to new discoveries the key component of this pathway in plants is a protein called RAP2.12, which is capable of binding to certain regions of DNA, thereby triggering the transcription of stress response genes.

Scientists observed that plants with an overexpression of RAP2.12 show an enhanced tolerance to submergence and a better recovery after flooding events.

Of special importance seems to be the N-terminus of a protein, so to say the beginning of the amino acid chain. If this amino acid sequence is altered by adding or removing amino acids the plant's response to low oxygen availability deteriorates. Under normal aerobic conditions RAP2.12 is attached to the cell membrane. When the oxygen level declines, the protein detaches from the membrane and accumulates in the nucleus where it can fulfill its duties as a transcription factor and activate certain genes. As soon as the oxygen availability rises to normal levels RAP2.12 is quickly degraded to stop the transcription of the stress response genes. In plants that express an N-terminally altered RAP2.12 the researchers found the protein to be present in the nucleus even before the oxygen stress started. Under hypoxia the modified protein accumulated in the nucleus but it was not degraded when the oxygen levels rose to normal conditions.

Still, it remained unclear how RAP2.12 sensed the change in oxygen concentration. Scientists of the Max-Planck-Institute of Molecular Plant Physiology together with colleagues from Italy and the Netherlands discovered that the so-called N-end rule comes into play. "According to the N-end rule the first amino acid of a protein determines its life span," explains group leader Joost van Dongen, "there are stabilizing and destabilizing amino acids." Cysteine, the first amino acid of RAP2.12 belongs to the group of destabilizers -- but only, if oxygen is present. Under hypoxia the life span of RAP2.12 increases, it detaches from the cell membrane and makes its way into the nucleus where it triggers the expression of stress response genes. When the oxygen level inside the cell goes back to normal RAP2.12 is degraded in less than one hour. "Our discovery of RAP2.12 as a central component of the oxygen sensing mechanism in plants opens up interesting possibilities to increase the flooding tolerance in crops" illustrates van Dongen. After all, about ten percent of the arable land worldwide is subject to temporary flooding each year.


Story Source:

The above story is based on materials provided by Max Planck Institute of Molecular Plant Physiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Francesco Licausi, Monika Kosmacz, Daan A. Weits, Beatrice Giuntoli, Federico M. Giorgi, Laurentius A. C. J. Voesenek, Pierdomenico Perata, Joost T. van Dongen. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011; DOI: 10.1038/nature10536

Cite This Page:

Max Planck Institute of Molecular Plant Physiology. "A protein shows plants the oxygen concentration of their surroundings." ScienceDaily. ScienceDaily, 23 October 2011. <www.sciencedaily.com/releases/2011/10/111023135604.htm>.
Max Planck Institute of Molecular Plant Physiology. (2011, October 23). A protein shows plants the oxygen concentration of their surroundings. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/10/111023135604.htm
Max Planck Institute of Molecular Plant Physiology. "A protein shows plants the oxygen concentration of their surroundings." ScienceDaily. www.sciencedaily.com/releases/2011/10/111023135604.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins