Featured Research

from universities, journals, and other organizations

A protein shows plants the oxygen concentration of their surroundings

Date:
October 23, 2011
Source:
Max Planck Institute of Molecular Plant Physiology
Summary:
Plants need water to grow, but every hobby gardener knows that you shouldn’t carry this to excess either. During waterlogging or flooding, plants can’t take up enough oxygen that they urgently need for their cellular respiration and energy production. Plants respond to this state of hypoxia with the activation of certain genes that help them cope with the stress. Until now it was unclear how plants are sensing the oxygen concentration. Recent experiments show that under hypoxia a protein that can activate genes, a so-called transcription factor, is released from the cell membrane to accumulate in the nucleus and trigger the expression of stress response genes.

Flood. Scientists observed that plants with an overexpression of RAP2.12 show an enhanced tolerance to submergence and a better recovery after flooding events.
Credit: © Ewald Frφch / Fotolia

Plants need water to grow, but every hobby gardener knows that you shouldn’t carry this to excess either. During waterlogging or flooding, plants can’t take up enough oxygen that they urgently need for their cellular respiration and energy production. Plants respond to this state of hypoxia with the activation of certain genes that help them cope with the stress. Until now it was unclear how plants are sensing the oxygen concentration. Recent experiments show that under hypoxia a protein that can activate genes, a so-called transcription factor, is released from the cell membrane to accumulate in the nucleus and trigger the expression of stress response genes.

Although plants produce oxygen via photosynthesis, in darkness they rely on external oxygen supply just like humans and animals. If the plants are cut off from oxygen supply, as a result of flooding for example, the energy production in the cells comes to a halt and the plants have to adjust their metabolism to the changed conditions. Hitherto, little was known about the way organisms sense the oxygen concentration of their surroundings. According to new discoveries the key component of this pathway in plants is a protein called RAP2.12, which is capable of binding to certain regions of DNA, thereby triggering the transcription of stress response genes.

Scientists observed that plants with an overexpression of RAP2.12 show an enhanced tolerance to submergence and a better recovery after flooding events.

Of special importance seems to be the N-terminus of a protein, so to say the beginning of the amino acid chain. If this amino acid sequence is altered by adding or removing amino acids the plant's response to low oxygen availability deteriorates. Under normal aerobic conditions RAP2.12 is attached to the cell membrane. When the oxygen level declines, the protein detaches from the membrane and accumulates in the nucleus where it can fulfill its duties as a transcription factor and activate certain genes. As soon as the oxygen availability rises to normal levels RAP2.12 is quickly degraded to stop the transcription of the stress response genes. In plants that express an N-terminally altered RAP2.12 the researchers found the protein to be present in the nucleus even before the oxygen stress started. Under hypoxia the modified protein accumulated in the nucleus but it was not degraded when the oxygen levels rose to normal conditions.

Still, it remained unclear how RAP2.12 sensed the change in oxygen concentration. Scientists of the Max-Planck-Institute of Molecular Plant Physiology together with colleagues from Italy and the Netherlands discovered that the so-called N-end rule comes into play. "According to the N-end rule the first amino acid of a protein determines its life span," explains group leader Joost van Dongen, "there are stabilizing and destabilizing amino acids." Cysteine, the first amino acid of RAP2.12 belongs to the group of destabilizers -- but only, if oxygen is present. Under hypoxia the life span of RAP2.12 increases, it detaches from the cell membrane and makes its way into the nucleus where it triggers the expression of stress response genes. When the oxygen level inside the cell goes back to normal RAP2.12 is degraded in less than one hour. "Our discovery of RAP2.12 as a central component of the oxygen sensing mechanism in plants opens up interesting possibilities to increase the flooding tolerance in crops" illustrates van Dongen. After all, about ten percent of the arable land worldwide is subject to temporary flooding each year.


Story Source:

The above story is based on materials provided by Max Planck Institute of Molecular Plant Physiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Francesco Licausi, Monika Kosmacz, Daan A. Weits, Beatrice Giuntoli, Federico M. Giorgi, Laurentius A. C. J. Voesenek, Pierdomenico Perata, Joost T. van Dongen. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011; DOI: 10.1038/nature10536

Cite This Page:

Max Planck Institute of Molecular Plant Physiology. "A protein shows plants the oxygen concentration of their surroundings." ScienceDaily. ScienceDaily, 23 October 2011. <www.sciencedaily.com/releases/2011/10/111023135604.htm>.
Max Planck Institute of Molecular Plant Physiology. (2011, October 23). A protein shows plants the oxygen concentration of their surroundings. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/10/111023135604.htm
Max Planck Institute of Molecular Plant Physiology. "A protein shows plants the oxygen concentration of their surroundings." ScienceDaily. www.sciencedaily.com/releases/2011/10/111023135604.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) — The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins