Featured Research

from universities, journals, and other organizations

Production of biofuel from forests will increase greenhouse gas emissions, study finds

Date:
October 26, 2011
Source:
Oregon State University
Summary:
The largest and most comprehensive study yet done on the effect of biofuel production from West Coast forests has concluded that an emphasis on bioenergy would increase carbon dioxide emissions from these forests at least 14 percent. The findings are contrary to assumptions and some previous studies that suggest biofuels from this source would be carbon-neutral or even reduce greenhouse gas emissions. In this research, that wasn't true in any scenario.

Forests and atmospheric carbon. A complete "life cycle analysis" outlines the various ways that wood products can be used and their influence on atmospheric carbon.
Credit: Graphic courtesy of Oregon State University

The largest and most comprehensive study yet done on the effect of biofuel production from West Coast forests has concluded that an emphasis on bioenergy would increase carbon dioxide emissions from these forests at least 14 percent, if the efficiency of such operations is optimal.

The findings are contrary to assumptions and some previous studies that suggest biofuels from this source would be carbon-neutral or even reduce greenhouse gas emissions.

In this research, that wasn't true in any scenario.

The study was published in Nature Climate Change, by scientists from the College of Forestry at Oregon State University and other institutions in Germany and France. It was supported by the U.S. Department of Energy.

During the past four years, the study examined 80 forest types in 19 eco-regions in Oregon, Washington and California, ranging from temperate rainforests to semi-arid woodlands. It included both public and private lands and different forest management approaches.

"On the West Coast, we found that projected forest biomass removal and use for bioenergy in any form will release more carbon dioxide to the atmosphere than current forest management practices," said Tara Hudiburg, a doctoral candidate at OSU and lead author on the study.

"Most people assume that wood bioenergy will be carbon-neutral, because the forest re-grows and there's also the chance of protecting forests from carbon emissions due to wildfire," Hudiburg said. "However, our research showed that the emissions from these activities proved to be more than the savings."

The only exception to this, the researchers said, was if forests in high fire-risk zones become weakened due to insect outbreaks or drought, which impairs their growth and carbon sequestration, as well as setting the stage for major fires. It's possible some thinning for bioenergy production might result in lower emissions in such cases if several specific criteria are met, they said.

"Until now there have been a lot of misconceptions about impacts of forest thinning, fire prevention and biofuels production as it relates to carbon emissions from forests," said Beverly Law, a professor in the OSU Department of Forest Ecosystems and Society and co-author of this study.

"If our ultimate goal is to reduce greenhouse gas emissions, producing bioenergy from forests will be counterproductive," Law said. "Some of these forest management practices may also have negative impacts on soils, biodiversity and habitat. These issues have not been thought out very fully."

The study examined thousands of forest plots with detailed data and observations, considering 27 parameters, including the role of forest fire, emissions savings from bioenergy use, wood product substitution, insect infestations, forest thinning, energy and processes needed to produce biofuels, and many others.

It looked at four basic scenarios: "business as usual"; forest management primarily for fire prevention purposes; additional levels of harvest to prevent fire but also make such operations more economically feasible; and significant bioenergy production while contributing to fire reduction.

Compared to "business as usual" or current forest management approaches, all of the other approaches increased carbon emissions, the study found. Under the most optimal levels of efficiency, management just for fire prevention increased it 2 percent; for better economic return, 6 percent; and for higher bioenergy production, 14 percent.

"However, we don't believe that an optimal efficiency of production is actually possible in real-world conditions," Hudiburg said. "With levels of efficiency that are more realistic, we project that the use of these forests for high bioenergy production would increase carbon emissions 17 percent from their current level."

About 98 percent of the forests in this region are now estimated to be a carbon sink, meaning that even with existing management approaches they sequester more carbon than they release to the atmosphere.

Plans for greenhouse gas reduction call for up to 10 percent lower emissions by 2020, and forest-derived fuels are now seen as a carbon-neutral solution to reducing energy emissions, the researchers note. However, this study suggests that increases in harvest volume on the West Coast, for any reason, will instead result in average increases in emissions above current levels.

Forests capture a large portion of the carbon emitted worldwide, and some of this carbon is stored in pools such as wood and soil that can last hundreds to thousands of years, the scientists said.

"Energy policy implemented without full carbon accounting and an understanding of the underlying processes risks increasing rather than decreasing emissions," the researchers wrote in their report.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tara W. Hudiburg, Beverly E. Law, Christian Wirth, Sebastiaan Luyssaert. Regional carbon dioxide implications of forest bioenergy production. Nature Climate Change, 2011; DOI: 10.1038/nclimate1264

Cite This Page:

Oregon State University. "Production of biofuel from forests will increase greenhouse gas emissions, study finds." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111023135657.htm>.
Oregon State University. (2011, October 26). Production of biofuel from forests will increase greenhouse gas emissions, study finds. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/10/111023135657.htm
Oregon State University. "Production of biofuel from forests will increase greenhouse gas emissions, study finds." ScienceDaily. www.sciencedaily.com/releases/2011/10/111023135657.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins