Featured Research

from universities, journals, and other organizations

Perinatal antidepressant stunts brain development in rats; Miswired brain circuitry traced to early exposure

Date:
October 25, 2011
Source:
NIH/National Institute of Mental Health
Summary:
Rats exposed to an antidepressant just before and after birth showed substantial brain abnormalities and behaviors, according to a new study. After receiving citalopram, a serotonin-selective reuptake inhibitor, during this critical period, long-distance connections between the two hemispheres of the brain showed stunted growth and degeneration. The animals also became excessively fearful when faced with new situations and failed to play normally with peers.

Cross-sections of the part of the rat brain that connects the left and right hemisphere (corpus collosum) show stunted development of neuronal wiring, called axons, in an animal that received an antidepressant (right) during a critical period around the time of birth. A protective sheath, called myelin (visible in normal animal at left), that normally wraps the axons and boosts their efficiency, failed to develop normally in the treated animal. The resultant inefficient neuronal communications could underlie the pattern of deficits seen in autism.
Credit: Rick C.S. Lin, Ph.D., University of Mississippi Medical Center

Rats exposed to an antidepressant just before and after birth showed substantial brain abnormalities and behaviors, in a study funded by the National Institutes of Health.

After receiving citalopram, a serotonin-selective reuptake inhibitor (SSRI), during this critical period, long-distance connections between the two hemispheres of the brain showed stunted growth and degeneration. The animals also became excessively fearful when faced with new situations and failed to play normally with peers -- behaviors reminiscent of novelty avoidance and social impairments seen in autism. The abnormalities were more pronounced in male than female rats, just as autism affects 3-4 times more boys than girls.

"Our findings underscore the importance of balanced serotonin levels -- not too high or low -- for proper brain maturation," explained Rick Lin, Ph.D., of the University of Mississippi Medical Center, Jackson, a Eureka Award grantee of the NIH's National Institute of Mental Health.

Lin and colleagues report on their discovery online during the week of Oct. 24, 2011, in the Proceedings of the National Academy of Sciences.

Last July, a study reported an association between mothers taking antidepressants and increased autism risk in their children. It found that children of mothers who took SSRI's during the year prior to giving birth ran twice the normal risk of developing autism -- with treatment during the first trimester of pregnancy showing the strongest effect. A study published last month linked the duration of a pregnant mother's exposure to SSRIs to modest lags in coordination of movement -- but within the normal range -- in their newborns.

"While one must always be cautious extrapolating from medication effects in rats to medication effects in people, these new results suggest an opportunity to study the mechanisms by which antidepressants influence brain and behavioral development," said NIMH Director Thomas R. Insel, M.D. "These studies will help to balance the mental health needs of pregnant mothers with possible increased risk to their offspring."

Earlier studies had hinted that serotonin plays an important role in shaping the still-forming brain in the days just after a rat is born, which corresponds to the end of the third trimester of fetal development in humans. Experimental manipulations of the chemical messenger during this period interfered with formation of sensory-processing regions of the cortex, or outer mantle, and triggered aggressive and anxiety-related behaviors in rodents.

There is also recent evidence in humans that serotonin from the placenta helps shape development of the fetal brain early in pregnancy. Disrupted serotonin has been linked to mood and anxiety disorders. SSRIs, the mainstay medication treatment for these disorders, boost serotonin activity.

Lin and colleagues gave citalopram to male and female rat pups prenatally and postnatally and examined their brains and behavior as they grew up. Male, but not female, SSRI exposed rat pups abnormally froze when they heard an unfamiliar tone and balked at exploring their environment in the presence of unfamiliar objects or scents. These behaviors persisted into adulthood. The male pups especially also shunned normal juvenile play behavior -- mimicking traits often seen in children with autism.

A key brain serotonin circuit, the raphe system, known to shape the developing brain during the critical period when the animals were exposed to the drug, showed dramatic reductions in density of neuronal fibers. Evidence of stunted development in the circuit coursed through much of the cortex and other regions important for thinking and emotion, such as the hippocampus.

The researchers also discovered miswiring in the structure responsible for communications between the brain's left and right hemispheres, called the corpus collosum. Extensions of neurons, called axons, through which such long-distance communications are conducted, were deformed. A protective sheath, called myelin, that normally wraps and boosts axons' efficiency-- like insulation on an electrical wire -- was reduced by one-third in the treated animals. This damage was three times worse in male than in female pups and would likely result in abnormal communication between the two hemispheres, say the researchers.

Moreover, the perinatally exposed animals showed evidence of neurons firing out of sync and other electrophysiological abnormalities, suggesting faulty organization of neuronal networks in the cortex.

The research also was supported by the NIH's National Center for Research Resources, National Institute of Neurological Disorders and Stroke and National Institute of Child Health and Human Development.


Story Source:

The above story is based on materials provided by NIH/National Institute of Mental Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kimberly L. Simpson, Kristin J. Weaver, Etienne De Villers-Sidani, Jordan Y.-F. Lu, Zhengwei Cai, Yi Pang, Federico Rodriguez-Porcel, Ian A. Paul, Michael Merzenich, Rick C. S. Lin. Perinatal antidepressant exposure alters cortical network function in rodents. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1109353108

Cite This Page:

NIH/National Institute of Mental Health. "Perinatal antidepressant stunts brain development in rats; Miswired brain circuitry traced to early exposure." ScienceDaily. ScienceDaily, 25 October 2011. <www.sciencedaily.com/releases/2011/10/111024153415.htm>.
NIH/National Institute of Mental Health. (2011, October 25). Perinatal antidepressant stunts brain development in rats; Miswired brain circuitry traced to early exposure. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/10/111024153415.htm
NIH/National Institute of Mental Health. "Perinatal antidepressant stunts brain development in rats; Miswired brain circuitry traced to early exposure." ScienceDaily. www.sciencedaily.com/releases/2011/10/111024153415.htm (accessed September 30, 2014).

Share This



More Mind & Brain News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
Your Spouse's Personality May Influence Your Earnings

Your Spouse's Personality May Influence Your Earnings

Newsy (Sep. 26, 2014) Research from Washington University suggest people with conscientious spouses have greater career success. Video provided by Newsy
Powered by NewsLook.com
Can A Blood Test Predict Psychosis Risk?

Can A Blood Test Predict Psychosis Risk?

Newsy (Sep. 26, 2014) Researchers say certain markers in the blood can predict risk of psychosis later in the life. The test can aid in early treatment for the condition. Video provided by Newsy
Powered by NewsLook.com
Harpist Soothes Gorillas, Orangutans With Music

Harpist Soothes Gorillas, Orangutans With Music

AP (Sep. 25, 2014) Teri Tacheny, a harpist, has a loyal following of fans who appreciate her soothing music. Every month, gorillas, orangutans and monkeys amble down to hear her play at the Como Park Zoo in Minnesota. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Antidepressant Linked to Developmental Brain Abnormalities in Rodents

Oct. 24, 2011 A new study shows that rats given a popularly prescribed antidepressant during development exhibit brain abnormalities and behaviors characteristic of autism spectrum ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins