Featured Research

from universities, journals, and other organizations

Quantum dots cast light on biomedical processes

Date:
October 27, 2011
Source:
University of Twente
Summary:
The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback: they do not dissolve in water. Researchers in the Netherlands and Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells.

Quantum dot with an amphiphilic coating, at which other polymer chains can be 'clicked' to form new combinations with other quantum dots.
Credit: Image courtesy of University of Twente

The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback: they do not dissolve in water. Researchers at the University of Twente's MESA+ Institute for Nanotechnology and at the A*STAR agency in Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells. The researchers published details of their coating recipe in the October issue of Nature Protocols.

The new coating enables quantum dots, which are semiconductor nanocrystals, to literally cast light on biological processes. These dots are "nuggets," consisting of several hundred to several thousand atoms, that emit visible light when they are exposed to invisible UV radiation, for example. They range from a few nanometres to several tens of nanometres in size. The coating's benefits are not limited to improved solubility in water alone. Other molecules can "lock on" to its surface. This could make coated quantum dots sensitive to certain substances, for example, or allow them to bind to specific types of cells, such as tumour cells.

Better option

Scientists studying biological processes often use fluorescent tags that bind to biomolecules. This makes it relatively easy to track such molecules, even inside living cells. Quantum dots are a better option. They emit long-lasting, bright light, the colour of which depends on the size of the quantum dots used. For a number of reasons, including their toxicity, they were previously unsuitable for use in living organisms.

The researchers therefore developed an amphiphilic coating, i.e. one with both hydrophobic and hydrophilic properties. The "water hating" side of the polymer material attaches to the surface of the quantum dot. Its exposed hydrophilic side then makes the quantum dot/coating combination soluble in water. The coating builds up on the surface of the quantum dot through a process of self-assembly. The coating polymer has the added benefit that other molecules can be bound to it. Another important plus is that it does not adversely affect the quantum dot's light-emitting properties.

The study is a collaborative venture between the University of Twente's MESA+ Institute for Nanotechnology and the A*STAR agency's Institute of Materials Research and Engineering, in Singapore. It is headed by Professor Julius Vancso, Professor of Materials Science and Technology of Polymers at the University of Twente, who is also a visiting scientist at the Singapore institute.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dominik Jańczewski, Nikodem Tomczak, Ming-Yong Han, G Julius Vancso. Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nature Protocols, 2011; 6 (10): 1546 DOI: 10.1038/nprot.2011.381

Cite This Page:

University of Twente. "Quantum dots cast light on biomedical processes." ScienceDaily. ScienceDaily, 27 October 2011. <www.sciencedaily.com/releases/2011/10/111026091008.htm>.
University of Twente. (2011, October 27). Quantum dots cast light on biomedical processes. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/10/111026091008.htm
University of Twente. "Quantum dots cast light on biomedical processes." ScienceDaily. www.sciencedaily.com/releases/2011/10/111026091008.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins