Featured Research

from universities, journals, and other organizations

Quantum dots cast light on biomedical processes

Date:
October 27, 2011
Source:
University of Twente
Summary:
The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback: they do not dissolve in water. Researchers in the Netherlands and Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells.

Quantum dot with an amphiphilic coating, at which other polymer chains can be 'clicked' to form new combinations with other quantum dots.
Credit: Image courtesy of University of Twente

The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback: they do not dissolve in water. Researchers at the University of Twente's MESA+ Institute for Nanotechnology and at the A*STAR agency in Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells. The researchers published details of their coating recipe in the October issue of Nature Protocols.

The new coating enables quantum dots, which are semiconductor nanocrystals, to literally cast light on biological processes. These dots are "nuggets," consisting of several hundred to several thousand atoms, that emit visible light when they are exposed to invisible UV radiation, for example. They range from a few nanometres to several tens of nanometres in size. The coating's benefits are not limited to improved solubility in water alone. Other molecules can "lock on" to its surface. This could make coated quantum dots sensitive to certain substances, for example, or allow them to bind to specific types of cells, such as tumour cells.

Better option

Scientists studying biological processes often use fluorescent tags that bind to biomolecules. This makes it relatively easy to track such molecules, even inside living cells. Quantum dots are a better option. They emit long-lasting, bright light, the colour of which depends on the size of the quantum dots used. For a number of reasons, including their toxicity, they were previously unsuitable for use in living organisms.

The researchers therefore developed an amphiphilic coating, i.e. one with both hydrophobic and hydrophilic properties. The "water hating" side of the polymer material attaches to the surface of the quantum dot. Its exposed hydrophilic side then makes the quantum dot/coating combination soluble in water. The coating builds up on the surface of the quantum dot through a process of self-assembly. The coating polymer has the added benefit that other molecules can be bound to it. Another important plus is that it does not adversely affect the quantum dot's light-emitting properties.

The study is a collaborative venture between the University of Twente's MESA+ Institute for Nanotechnology and the A*STAR agency's Institute of Materials Research and Engineering, in Singapore. It is headed by Professor Julius Vancso, Professor of Materials Science and Technology of Polymers at the University of Twente, who is also a visiting scientist at the Singapore institute.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dominik Jańczewski, Nikodem Tomczak, Ming-Yong Han, G Julius Vancso. Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nature Protocols, 2011; 6 (10): 1546 DOI: 10.1038/nprot.2011.381

Cite This Page:

University of Twente. "Quantum dots cast light on biomedical processes." ScienceDaily. ScienceDaily, 27 October 2011. <www.sciencedaily.com/releases/2011/10/111026091008.htm>.
University of Twente. (2011, October 27). Quantum dots cast light on biomedical processes. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/10/111026091008.htm
University of Twente. "Quantum dots cast light on biomedical processes." ScienceDaily. www.sciencedaily.com/releases/2011/10/111026091008.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins