Featured Research

from universities, journals, and other organizations

Fighting fire with fire: 'Vampire' bacteria have potential as living antibiotic

Date:
November 1, 2011
Source:
University of Virginia
Summary:
A vampire-like bacterium that leeches onto specific other bacteria -- including certain human pathogens -- has the potential to serve as a living antibiotic for a range of infectious diseases, a new study indicates.

A vampire-like bacterium that leeches onto specific other bacteria -- including certain human pathogens -- has the potential to serve as a living antibiotic for a range of infectious diseases, a new study indicates.

The bacterium, Micavibrio aeruginosavorus, was discovered to inhabit wastewater nearly 30 years ago, but has not been extensively studied because it is difficult to culture and investigate using traditional microbiology techniques. However, biologists in the University of Virginia's College of Arts & Sciences, Martin Wu and graduate student Zhang Wang, have decoded its genome and are learning "how it makes its living," Wu said.

The bacterium "makes its living" by seeking out prey -- certain other bacteria -- and then attaching itself to its victim's cell wall and essentially sucking out nutrients. Unlike most other bacteria, which draw nutrients from their surroundings, M. aeruginosavorus can survive and propagate only by drawing its nutrition from specific prey bacteria. This kills the prey -- making it a potentially powerful agent for destroying pathogens.

One bacterium it targets is Pseudomonas aeruginosavorus, which is a chief cause of serious lung infections in cystic fibrosis patients.

"Pathologists may eventually be able to use this bacterium to fight fire with fire, so to speak, as a bacterium that will aggressively hunt for and attack certain other bacteria that are extremely harmful to humans," Wu said.

His study, detailing the DNA sequence of M. aeruginosavorus, is published online in the journal BMC Genomics. It provides new insights to the predatory lifestyle of the bacterium and a better understanding of the evolution of bacterial predation in general.

"We used cutting-edge genomic technology in our lab to decode this bacterium's genome," Wu said. "We are particularly interested in the molecular mechanisms that allow it to hunt for and attack prey. This kind of investigation would have been extremely difficult and expensive to do only a few years ago."

He noted that overuse of traditional antibiotics, which work by either inhibiting bacteria propagation or interfering with cell wall formation, are creating so-called "super bugs" that have developed resistances to treatment strategies. He suggests that new approaches are needed for attacking pathogens without building up their resistance.

Additionally, because M. aeruginosavorus is so selective a feeder, it is harmless to the thousands of beneficial bacteria that dwell in the general environment and in the human body.

"It is possible that a living antibiotic such as M. aeruginosavorus -- because it so specifically targets certain pathogens -- could potentially reduce our dependence on traditional antibiotics and help mitigate the drug-resistance problem we are now facing," Wu said.

Another benefit of the bacterium is its ability to swim through viscous fluids, such as mucus. P. aeruginosavorus, the bacterium that colonizes the lungs of cystic fibrosis patients, creates a glue-like biofilm, enhancing its resistance to traditional antibiotics. Wu noted that the living cells of M. aeruginosavorus can swim through mucus and biofilm and attack P. aeruginosavorus.

M. aeruginosavorus also might have industrial uses, such as reducing bacteria that form biofilms in piping, and for medical devices, such as implants that are susceptible to the formation of biofilms.

Wu said M. aeruginosavorus requires further study for a more thorough understanding of its gene functions. He said genetic engineering would be required to tailor the predatory attributes of the bacterium to specific uses in the treatment of disease.

"We have a map now to work with, and we will see where it leads," he said.

Wu and Wang's co-author is Daniel E. Kadouri, a researcher at the New Jersey Dental School. Kadouri is interested in M. aeruginosavorus as an agent for fighting oral biofilms, such as plaque.


Story Source:

The above story is based on materials provided by University of Virginia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhang Wang, Daniel E Kadouri, Martin Wu. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics, 2011; 12 (1): 453 DOI: 10.1186/1471-2164-12-453

Cite This Page:

University of Virginia. "Fighting fire with fire: 'Vampire' bacteria have potential as living antibiotic." ScienceDaily. ScienceDaily, 1 November 2011. <www.sciencedaily.com/releases/2011/10/111031220602.htm>.
University of Virginia. (2011, November 1). Fighting fire with fire: 'Vampire' bacteria have potential as living antibiotic. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/10/111031220602.htm
University of Virginia. "Fighting fire with fire: 'Vampire' bacteria have potential as living antibiotic." ScienceDaily. www.sciencedaily.com/releases/2011/10/111031220602.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins