Featured Research

from universities, journals, and other organizations

Research cracks puzzle of enzyme critical to food supply

Date:
November 17, 2011
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
Researchers used the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory to identify a key atom inside the part of the nitrogenase enzyme where atmospheric nitrogen is converted into a form that living things can use.

SLAC’s Uwe Bergmann holds a model of a critical cluster of atoms inside the nitrogenase enzyme where atmospheric nitrogen is converted into a form that living things can use. Bergmann developed the technique that was used to identify a key atom in the cluster as carbon. He is on a team that describes the work in a Nov. 18 Science paper.
Credit: Photo by Matt Beardsley

If we could make plant food from nitrogen the way nature does, we'd have a much greener method for manufacturing fertilizer -- a process that requires such high temperatures and pressures that it consumes about 1.5 percent of the world's energy.

Now, scientists working at the Department of Energy's SLAC National Accelerator Laboratory have taken an important step towards understanding how nature performs this trick, by identifying a key atom that researchers had sought for more than a decade.

The atom lies at the heart of an enzyme called nitrogenase, which plays a critical role in converting nitrogen in the air into a form that living things can use. Scientists have long sought to determine the structure of this enzyme; among other things, they hope to eventually reverse-engineer it and mimic nature's gentle version of the reaction.

"The fascination with this enzyme is the fact that it enables this reaction to take place at room temperature and atmospheric pressure," said chemist Serena DeBeer of Cornell University and the Max Planck Institute for Bioinorganic Chemistry, who led the team that performed crucial experiments at SLAC. So hot was the race to identify the mystery atom that it ended in a photo finish: in the Nov. 18 issue of Science, two independent teams, using different approaches, identify the atom as carbon.

It had eluded scientists because of its sequestered location inside a cluster of metal atoms. The key in the team's research was a technique called X-ray emission spectroscopy, or XES, which co-author Uwe Bergmann of SLAC had developed over the past decade.

The researchers needed a trick to find the one important carbon inside the metal cluster. They used an intense beam of X-rays from the Stanford Synchrotron Radiation Lightsource to knock the innermost electrons out of iron atoms in the cluster. Normally other electrons from iron would fill this hole; but there was a tiny chance, much less than one in a thousand, that the hole would be filled by an electron belonging to a neighboring atom, and thus emit X-rays characteristic of the neighbor's identity. It was this subtle feature in the X-ray emission spectrum that revealed that a carbon atom, rather than a nitrogen or oxygen, was bound to the iron atoms in the cluster.

"This was a simple but important question and we were able to give a straightforward answer," Bergmann said. "I think this will have a big impact not only on the understanding of nitrogenase but on the use of X-ray emission spectroscopy."

Why is this particular atom so important? The cluster of metal atoms is where nitrogen molecules from the air, N2, are broken down and converted to ammonia and other compounds by microbes in the soil. Then plants take it up and spread it through the food chain. This is how we get roughly half of the nitrogen in our bodies; the rest comes from artificial fertilizers made via the Haber-Bosch reaction, the resource-intensive method widely used to convert atmospheric nitrogen to ammonia.

Researchers knew a decade ago that the central atom in the metal cluster must be nitrogen, oxygen or carbon. Each would affect the reaction differently. But how to identify this atom among the 20,545 total carbon atoms, 11,026 oxygen atoms and 5,431 nitrogen atoms in the enzyme?

"Because it's sequestered in the middle of a bunch of metal atoms and you've got no way to get your hands on it, it's a really hard problem," said chemist Brian Hoffman of Northwestern University, who has investigated nitrogenase for 30 years but was not involved in these studies. "What the team has done would appear to be a classic case where new technology leads to new science."


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kyle M. Lancaster, Michael Roemelt, Patrick Ettenhuber, Yilin Hu, Markus W. Ribbe, Frank Neese, Uwe Bergmann, Serena Debeer. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science, 2011; 334 (6058): 974-977 DOI: 10.1126/science.1206445

Cite This Page:

DOE/SLAC National Accelerator Laboratory. "Research cracks puzzle of enzyme critical to food supply." ScienceDaily. ScienceDaily, 17 November 2011. <www.sciencedaily.com/releases/2011/11/111117144001.htm>.
DOE/SLAC National Accelerator Laboratory. (2011, November 17). Research cracks puzzle of enzyme critical to food supply. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/11/111117144001.htm
DOE/SLAC National Accelerator Laboratory. "Research cracks puzzle of enzyme critical to food supply." ScienceDaily. www.sciencedaily.com/releases/2011/11/111117144001.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


In an Enzyme Critical for Life, X-Ray Emission Cracks Mystery Atom

Nov. 17, 2011 Like a shadowy character just hidden from view, a mystery atom in the middle of a complex enzyme called nitrogenase had long hindered scientists' ability to study the enzyme fully. But now ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins