Featured Research

from universities, journals, and other organizations

In an enzyme critical for life, X-ray emission cracks mystery atom

Date:
November 17, 2011
Source:
Cornell University
Summary:
Like a shadowy character just hidden from view, a mystery atom in the middle of a complex enzyme called nitrogenase had long hindered scientists' ability to study the enzyme fully. But now researchers reveal the once-elusive atom.

From left to right: Serena DeBeer, Michael Roemelt and Frank Neese of the Max Planck Institute. The three are among the authors on a Nov. 18 Science paper identifying a key atom inside the part of the nitrogenase enzyme where atmospheric nitrogen is converted into a form that living things can use.
Credit: Photo courtesy of Max Planck Institute

Like a shadowy character just hidden from view, a mystery atom in the middle of a complex enzyme called nitrogenase had long hindered scientists' ability to study the enzyme fully.

Related Articles


But now an international team of scientists led by Serena DeBeer, Cornell assistant professor of chemistry and chemical biology, has pulled back the curtain using powerful synchrotron spectroscopy and computational modeling to reveal carbon as the once-elusive atom.

The research was published online Nov. 17 in the journal Science.

"For chemists, one of the first steps you want to be able to take is to actually model the site," said DeBeer. "It turns out that the chemistry of how this cluster behaves will be different depending on what atom is in the middle. This is the first step toward trying to unravel its mechanism."

Why nitrogenase? In nature, all life requires the element nitrogen from the atmosphere to form amino acids and build proteins. Bacteria need to convert nitrogen to ammonia as a precursor to more complex biosynthetic processes. The enzyme that catalyzes all this is nitrogenase, and it does it by breaking one of the strongest bonds in chemistry -- the nitrogen triple bond.

The chemical industry has figured out how to convert nitrogen to ammonia in high-temperature and high-pressure industrial environments. There's a fascination with understanding how the enzyme makes this same process work in nature, DeBeer said.

DeBeer and colleagues honed in on a subset of atoms in the relatively large enzyme, called the iron-molybdenum cofactor, which was thought to be the site where dinitrogen (N2) gets converted to ammonia, and where the mystery atom is situated inside.

The team used a method called X-ray emission spectroscopy (XES) at the Stanford Synchrotron Radiation Light Source to excite the electrons in the cofactor's iron cluster and to watch how electrons refilled the spots, called "holes," they left behind. The holes were sometimes filled by an electron belonging to a neighboring atom -- emitting X-ray signatures with distinct ionization potentials that would distinguish between different kinds of atoms.

This was how it was revealed that the cofactor contained a carbon atom, rather than a nitrogen or an oxygen atom, that was bound to the iron atoms in the cluster.

The paper's first author is Kyle M. Lancaster, a Cornell postdoctoral associate in chemistry. DeBeer's collaborators are at the University of Bonn in Germany, University of California-Irvine, Max Planck Institute and the SLAC National Accelerator Laboratory at Stanford.

The research was supported by Cornell, the University of Bonn, the Max Planck Society and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cornell University. The original article was written by Anne Ju. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kyle M. Lancaster, Michael Roemelt, Patrick Ettenhuber, Yilin Hu, Markus W. Ribbe, Frank Neese, Uwe Bergmann, and Serena DeBeer. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science, 18 November 2011: 974-977 DOI: 10.1126/science.1206445

Cite This Page:

Cornell University. "In an enzyme critical for life, X-ray emission cracks mystery atom." ScienceDaily. ScienceDaily, 17 November 2011. <www.sciencedaily.com/releases/2011/11/111117144007.htm>.
Cornell University. (2011, November 17). In an enzyme critical for life, X-ray emission cracks mystery atom. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2011/11/111117144007.htm
Cornell University. "In an enzyme critical for life, X-ray emission cracks mystery atom." ScienceDaily. www.sciencedaily.com/releases/2011/11/111117144007.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Research Cracks Puzzle of Enzyme Critical to Food Supply

Nov. 17, 2011 Researchers used the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory to identify a key atom inside the part of the nitrogenase enzyme where atmospheric nitrogen is ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins