Featured Research

from universities, journals, and other organizations

Global winds could explain record rains, tornadoes

Date:
December 6, 2011
Source:
University of Wisconsin-Madison
Summary:
Scientists have proposed a common root for an enormous deluge in western Tennessee in May 2010, and a historic outbreak of tornadoes centered on Alabama in April 2011. Both events seem to be linked to a relatively rare coupling between the polar and the subtropical jet streams.

An aerial view shows severe flooding that hit Tennessee in 2010.
Credit: Image courtesy of University of Wisconsin-Madison

Two talks at a scientific conference this week will propose a common root for an enormous deluge in western Tennessee in May 2010, and a historic outbreak of tornadoes centered on Alabama in April 2011.

Both events seem to be linked to a relatively rare coupling between the polar and the subtropical jet streams, says Jonathan Martin, a University of Wisconsin-Madison professor of atmospheric and oceanic sciences.

But the fascinating part is that the change originates in the western Pacific, about 9,000 miles away from the intense storms in the U.S. midsection, Martin says.

The mechanism that causes the storms originates during spring or fall when organized complexes of tropical thunderstorms over Indonesia push the subtropical jet stream north, causing it to merge with the polar jet stream.

The subtropical jet stream is a high-altitude band of wind that is normally located around 30 degrees north latitude. The polar jet stream is normally hundreds of miles to the north.

Martin calls the resulting band of wind a "superjet."

Jet streams in the northern hemisphere blow from the west at roughly 140 miles per hour, and are surrounded by a circular whirlwind that looks something like a tornado pushed on its side. The circulating wind at the bottom of the jet stream blows from the south. On the north side, the circulating winds turn vertical, lifting and cooling the air until the water vapor condenses and feeds precipitation.

A superjet and its circulating winds carry roughly twice as much energy as a typical jet stream, Martin says. "When these usually separate jet streams sit atop one another, there tends to be a very strong vertical circulation, which produces clouds, precipitation and tornadoes under the right conditions."

And because the circulating wind in a superjet moving across the U.S. south picks up moisture from the Gulf of Mexico, "the superjet gives a double-whammy -- more moisture, and more lifting, producing that intense rain."

That was the case in May 2010, when 10 to 20 inches of rain fell around Nashville.

Andrew Winters, who is now a graduate student studying with Martin, latched onto the Tennessee flood as the topic of his senior undergraduate thesis in 2010. "It had a lot of interesting aspects, brought an anomalous amount of moisture into the southeast, and that hefty amount of rain," Winters says.

And that super-strong jet stream "could be traced back to conditions in the western Pacific, almost a week earlier," Winters says.

Martin and Winters describe their work in talks Dec. 6 and 7 at the annual meeting of the American Geophysical Union in San Francisco.

Studies of the Tennessee floods, the Alabama tornados, and an odd October storm in Wisconsin showed "that when the subtropical jet is pushed poleward under the influence of strong thunderstorms in the western Pacific, it seems to result in these intense storms in the U.S. midsection," Martin says. "It's a really fascinating global connection that occurs seven to 10 days later."

Martin also suggests the altered position of the subtropical jet stream may be linked to global warming.

"There is reason to believe that in a warmer climate, this kind of overlapping of the jet streams that can lead to high-impact weather may be more frequent," Martin says.

That idea can be tested, Martin adds.

"Historic weather data should tell us whether there has been a change in the frequency of these overlapping events, and whether that might be linked to a change in high impact-weather events. It's an interesting lead that could help us understand one possible mechanism by which a warmer climate could lead to an increase in severe weather," he says.

Although hurricanes can be tracked for a week or more as they cross the Atlantic Ocean, weather phenomena seldom last so long, Martin says. "If the subtropical jet stream is rearranged and superposed on top of the polar jet stream, it might be the mechanism that allows for this very long delay, a disturbance that can have discernible effect on severe weather thousands of miles downstream, and a week or more later."

Martin says that if the new analysis survives further study, it could contribute to severe weather forecasting.

Though severe weather was forecast a day or two in advance of the deadly tornado outbreak in the Southeast this April, "most tornado forecasts are made 12 or at most 24 hours in advance. That saves lives. But if we get the idea five or six days in advance that we should watch the position of the jet streams, we could say, 'Hey, we have a pretty exciting week coming up, we have to be on high alert.'"


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Global winds could explain record rains, tornadoes." ScienceDaily. ScienceDaily, 6 December 2011. <www.sciencedaily.com/releases/2011/12/111205170101.htm>.
University of Wisconsin-Madison. (2011, December 6). Global winds could explain record rains, tornadoes. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/12/111205170101.htm
University of Wisconsin-Madison. "Global winds could explain record rains, tornadoes." ScienceDaily. www.sciencedaily.com/releases/2011/12/111205170101.htm (accessed July 30, 2014).

Share This




More Earth & Climate News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Climate Change Could Cost Billions According To White House

Climate Change Could Cost Billions According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins