Science News
from research organizations

Fauna of an entire lake in a shot glass

Date:
December 13, 2011
Source:
University of Copenhagen
Summary:
Danish researchers are leading the way for future biodiversity monitoring using DNA traces in the environment to keep track of threatened wildlife: a lake water sample the size of a shot glass can contain evidence of an entire lake fauna.
Share:
       
FULL STORY

Large white-faced darter (dragonfly).
Credit: Lars L. Iversen

Danish research team leads the way for future biodiversity monitoring using DNA traces in the environment to keep track of threatened wildlife -- a lake water sample the size of a shot glass can contain evidence of an entire lake fauna.

Global biodiversity is plummeting while biologists are fighting to keep score and reliable monitoring of threatened animals remains a major challenge. The biologist toolset has changed little on this area for a hundred years -- still relying on expensive expert surveys basically finding and counting the animals. However, this situation is now set to change according to a recent study by researchers at the Natural History Museum of Denmark published as a cover story in the journal Molecular Ecology. The results of the study show that a new method can be used to monitor rare and threatened animal species from DNA traces in their freshwater environments.

DNA traces in very small water samples

The development of the innovative DNA species monitoring was accomplished by PhD student Philip Francis Thomsen and Master's students Jos Kielgast and Lars L. Iversen at Centre for GeoGenetics headed by professor Eske Willerslev.

"We have shown that the DNA detection method works on a wide range of different rare species living in freshwater -- they all leave DNA traces in their environment which can be detected in even very small water samples from their habitat. In the water samples we find DNA from animals as different as an otter and a dragonfly," says Philip Francis Thomsen.

Study of 100 different lakes and streams

By studying the fauna of one hundred different lakes and streams in Europe with both conventional methods -- counting individuals -- and the new DNA-based method the research team documents that DNA detection is effective even in populations where the animals are extremely rare. The study also shows that there is a clear correlation between the amount of DNA in the environment and the density of individuals meaning that the DNA detection method can even be used to estimate population sizes. This is crucial in the monitoring of rare animals, where one often wants to know whether the population is large or small.

"The UN has agreed to halt the decline of biodiversity, but a prerequisite to do so is that we are capable of properly documenting the status of threatened species. Our new approach is a huge step forward making it cheaper and faster to monitor the endangered species, and thus prioritise efforts to the benefit of biodiversity at a broad scale," says Jos Kielgast.

The researchers have documented that DNA traces of animals are nearly ubiquitous in the freshwater environment and, as a proof-of-concept, these findings may have wider implications reaching disciplines far beyond threatened species monitoring. With DNA sequencing technology advancing at rapidly dropping costs, environmental DNA research is set to change from being merely a scientific curiosity to become an important tool in applied biology. It is for example conceivable that fishing quota may in the future be based on DNA traces rather than fish catches.


Story Source:

The above post is reprinted from materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philip Francis Thomsen, Jos Kielgast, Lars L. Iversen, Carsten Wiuf, Morten Rasmussen, M. Thomas P Gilbert, Ludovic Orlando, Eske Willerslev. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 2011; DOI: 10.1111/j.1365-294X.2011.05418.x

Cite This Page:

University of Copenhagen. "Fauna of an entire lake in a shot glass." ScienceDaily. ScienceDaily, 13 December 2011. <www.sciencedaily.com/releases/2011/12/111211134006.htm>.
University of Copenhagen. (2011, December 13). Fauna of an entire lake in a shot glass. ScienceDaily. Retrieved August 1, 2015 from www.sciencedaily.com/releases/2011/12/111211134006.htm
University of Copenhagen. "Fauna of an entire lake in a shot glass." ScienceDaily. www.sciencedaily.com/releases/2011/12/111211134006.htm (accessed August 1, 2015).

Share This Page: