Featured Research

from universities, journals, and other organizations

A small step for lungfish, a big step for the evolution of walking

Date:
December 13, 2011
Source:
University of Chicago Medical Center
Summary:
The eel-like body and scrawny "limbs" of the African lungfish would appear to make it an unlikely innovator for locomotion. But its improbable walking behavior, newly described, redraws the evolutionary route of life on Earth from water to land.

The eel-like body and scrawny "limbs" of the African lungfish would appear to make it an unlikely innovator for locomotion. But its improbable walking behavior, newly described by University of Chicago scientists, redraws the evolutionary route of life on Earth from water to land.
Credit: Image courtesy of University of Chicago Medical Center

The eel-like body and scrawny "limbs" of the African lungfish would appear to make it an unlikely innovator for locomotion. But its improbable walking behavior, newly described by University of Chicago scientists, redraws the evolutionary route of life on Earth from water to land.

Extensive video analysis, published in the Proceedings of the National Academy of Sciences, reveal that the African lungfish can use its thin pelvic limbs to not only lift its body off the bottom surface but also propel itself forward. Both abilities were previously thought to originate in early tetrapods, the limbed original land-dwellers that appeared later than the lungfish's ancestors.

The observation reshuffles the order of evolutionary events leading up to terrestriality, the adaptation to living on land. It also suggests that fossil tracks long believed to be the work of early tetrapods could have been produced instead by lobe-finned ancestors of the lungfish.

"In a number of these trackways, the animals alternate their limbs, which suggested that they must have been made by tetrapods walking on a solid substrate," said Melina Hale, PhD, associate professor of Organismal Biology and Anatomy. "We've found that aquatic animals with fundamentally different morphologies and that aren't tetrapods could potentially make very similar track patterns."

Lungfish are a popular pet in the paleontological community, treasured for their unique evolutionary heritage.

"The lungfish is in a really great and unique position in terms of how it is related to fishes and to tetrapods," said Heather King, a graduate student and lead author of the study. "Lungfish are very closely related to the animals that were able to evolve and come out of the water and onto land, but that was so long ago that almost everything except the lungfish has gone extinct."

While anecdotes and rumors circulated within the scientific community about the alleged walking behavior of these strange fish, nobody looked systematically at the biomechanics of their locomotion. An African lungfish (Protopterus annectens) kept in the laboratory of study co-author Michael Coates inspired King to study the species' ability to walk on its unusually thin limbs.

King and her colleagues designed a special tank in which the motions of lungfish could be videotaped from the side and below for in-depth analysis. The videos revealed that lungfish commonly use their hind, or pelvic, limbs to elevate their body off the surface and propel themselves forward. Though the forelimbs look similar to the hindlimbs, they were not involved in locomotion, the authors found.

"This is all information we can only get from a living animal," King said. "Because if you were just to look at the bones, like you would with a fossil, you might not ever know these motions could occur."

Lungfish also demonstrated both "bounding" motions, where both limbs moved at once, and "walking," marked by alternating limbs. Coupled with the ability of the lungfish to fully rotate the limb and place each subsequent footfall in front of the joint, the motion suggests that similar creatures would have been capable of producing some of the fossil tracks credited to tetrapods.

"It's tempting to attribute alternating impressions to something like the footfalls of an early tetrapod with digits, and yet here we've got good evidence that living lungfish can leave similar sequences of similar gait," said Coates, PhD, professor of Organismal Biology and Anatomy. "The fin or limb use thought to be unique to tetrapods is actually more general."

The lungfish's ability to use its thin limbs to support its body may be helped by the reduced demands of gravity underwater, the authors proposed. By filling its lungs with air, the lungfish may increase the buoyancy of its front end, enabling the scrawny hindlimbs to lift the entire body off the ground.

"If you showed me the skeleton of this creature and asked me to make a bet on whether it walks or not, I would have bet it couldn't," said co-author Neil Shubin, PhD, Robert R. Bensley Professor of Organismal Biology and Anatomy. "Their fins seem like the furthest thing from walking appendages possible. But it shows what's possible in an aquatic medium where you don't have to support yourself with gravity."

The discovery suggests that many of the developments necessary for the transition from water to land could have occurred long before early tetrapods, such as Tiktaalik, took their first steps on shore. Lobe-finned ancestors of the lungfishes as well as tetrapods could have evolved hindlimb propulsion and the ability to walk on the substrate at the bottom of a lake or marsh millions of years before limbs with digits and land-dwelling animals appeared.

"This shows us -- pardon the pun -- the steps that are involved in the origin of walking," Shubin said. "What we're seeing in lungfish is a very nice example of how bottom-walking in fish living in water can easily come about in a very tetrapod-like pattern."

The paper, "Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes," will be published in the online Early Edition of Proceedings of National Academy of Sciences the week of December 12, 2011. Funding for this work was provided by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. M. King, N. H. Shubin, M. I. Coates, M. E. Hale. Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1118669109

Cite This Page:

University of Chicago Medical Center. "A small step for lungfish, a big step for the evolution of walking." ScienceDaily. ScienceDaily, 13 December 2011. <www.sciencedaily.com/releases/2011/12/111212153117.htm>.
University of Chicago Medical Center. (2011, December 13). A small step for lungfish, a big step for the evolution of walking. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/12/111212153117.htm
University of Chicago Medical Center. "A small step for lungfish, a big step for the evolution of walking." ScienceDaily. www.sciencedaily.com/releases/2011/12/111212153117.htm (accessed September 19, 2014).

Share This



More Plants & Animals News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins