Featured Research

from universities, journals, and other organizations

Cumulative impact of mountaintop mining documented

Date:
January 27, 2012
Source:
Duke University
Summary:
Increased salinity and concentrations of trace elements in one West Virginia watershed have been tied directly to multiple surface coal mines upstream by a detailed new survey of stream chemistry. Researchers who conducted the study said it provides new evidence of the cumulative effects multiple mountaintop mining permits can have in a river network.

Increased salinity and concentrations of trace elements in one West Virginia watershed have been tied directly to multiple surface coal mines upstream by a detailed new survey of stream chemistry. The Duke University team that conducted the study said it provides new evidence of the cumulative effects multiple mountaintop mining permits can have in a river network.

Our analysis of water samples from 23 sites along West Virginia's Upper Mud River and its tributaries shows that salinity and trace element concentrations, including selenium, increased at a rate directly proportional to the cumulative amount of surface mining in the watershed," said Duke researcher Ty Lindberg. "We found a strong linear correlation."

Changes in water quality due to the increased salinity in the Upper Mud from mine runoff also were found to be "exceptionally persistent," Lindberg said. "Mines reclaimed almost two decades ago are continuing to release effluents with salinity similar to active mines in the region."

The Duke team's study appears this week in the peer-reviewed online Early Edition of the Proceedings of the National Academy of Sciences.

In mountaintop mining, companies use explosives and heavy machinery to clear away surface rocks and extract shallow deposits of high-quality coal below. The companies typically dispose of the waste rock in adjacent valleys, where it buries existing headwater streams.

To assess the cumulative impact of the more than 100 permitted discharge outlets draining approximately 28 square kilometers of active and reclaimed mountaintop coal mines in the Upper Mud watershed, the Duke researchers collected 152 sets of samples from 23 sites -- including two sites upstream of any active or reclaimed surface mines -- between May and December 2010. They sampled for electrical conductivity, a measure of salinity and for concentrations of major ions and trace elements derived from coal or its matrix rock.

All conductivity measurements taken downstream of mine discharge outlets exceeded levels known to be harmful to aquatic life, said Richard Di Giulio, professor of environmental toxicology. At the two sampling sites upstream of any mines, conductivity levels were within an acceptable range. Concentrations of selenium, a known fish toxin, followed a similar trend, Di Giulio said. The researchers also observed deformities typical of selenium exposure in fish collected from downstream waters.

"As eight separate mining-impacted tributaries flowed into the Upper Mud, conductivity and concentrations of selenium, sulfate, magnesium and other inorganic solutes increased proportionately," said Avner Vengosh, professor of geochemistry and water quality. "Nearly 90 percent of the variation in trace elements and salinity could be explained by the amount of upstream surface mining."

The Upper Mud flows through sparsely populated sections of Boone and Lincoln counties in southern West Virginia as a headwater stream until reaching its impoundment in the Mud River reservoir 25 kilometers downstream. For about 10 kilometers, the river passes through the Hobet 21 surface mining complex, which has been active since the 1970s and is among the largest in the Appalachian coalfields region.

The Duke team selected the Upper Mud watershed for their field survey because water-quality impacts from other potential sources are largely absent. Historically, surface rather than underground mining has been the dominant form of coal extraction in the Upper Mud's river basin, and there are very few people now living within the Hobet mine's permitted boundary. This helped to minimize other factors that might account for changes in water quality.

"This is a remarkably clean dataset and that's why it's so powerful," said Emily Bernhardt, associate professor of biogeochemistry. "We see these incredibly strong patterns, which previously have not been well established." Past studies have shown that individual mines profoundly impact stream water quality, biological community structure and ecosystem function immediately downstream of valley fills, but empirical data on the cumulative impacts of multiple mining operations on larger downstream rivers has been lacking, she said.

"Individual permitting decisions are typically made without consideration of the extent of historic mining impacts already occurring within a watershed," Bernhardt said. "Our survey helps fill that gap."

Duke PhD students Raven Bier and Brittany Merola and postdoctoral researcher Ashley Helton co-authored the study.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. T. Lindberg, E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh, R. T. Di Giulio. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1112381108

Cite This Page:

Duke University. "Cumulative impact of mountaintop mining documented." ScienceDaily. ScienceDaily, 27 January 2012. <www.sciencedaily.com/releases/2011/12/111212153119.htm>.
Duke University. (2012, January 27). Cumulative impact of mountaintop mining documented. ScienceDaily. Retrieved October 19, 2014 from www.sciencedaily.com/releases/2011/12/111212153119.htm
Duke University. "Cumulative impact of mountaintop mining documented." ScienceDaily. www.sciencedaily.com/releases/2011/12/111212153119.htm (accessed October 19, 2014).

Share This



More Earth & Climate News

Sunday, October 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Powerful Hurricane Gonzalo Heads to Bermuda

Raw: Powerful Hurricane Gonzalo Heads to Bermuda

AP (Oct. 17, 2014) Hurricane Gonzalo pounded Bermuda with wind and heavy surf on Friday, bearing down on the tiny British territory as a powerful Category 3 storm that could raise coastal seas as much as 10 feet. (Oct. 17) Video provided by AP
Powered by NewsLook.com
So, Kangaroos Didn't Always Hop

So, Kangaroos Didn't Always Hop

Newsy (Oct. 16, 2014) Researchers believe an extinct kangaroo species weighed 500 pounds or more and couldn't hop. Video provided by Newsy
Powered by NewsLook.com
Hurricane Gonzalo Is A Category 4 And Heading To Bermuda

Hurricane Gonzalo Is A Category 4 And Heading To Bermuda

Newsy (Oct. 16, 2014) Powerful hurricane could hit Bermuda this weekend, and even if it misses it will likely do some damage. Video provided by Newsy
Powered by NewsLook.com
The Largest Volcano In Centuries Is Spewing Toxic Gas

The Largest Volcano In Centuries Is Spewing Toxic Gas

Newsy (Oct. 16, 2014) One of the largest volcanic eruptions in centuries is occurring on Iceland. The volcano Bardarbunga is producing high levels of sulfur dioxide. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins