Featured Research

from universities, journals, and other organizations

Legumes give nitrogen-supplying bacteria special access pass

Date:
December 19, 2011
Source:
Norwich BioScience Institutes
Summary:
A 125-year debate on how nitrogen-fixing bacteria are able to breach the cell walls of legumes has been settled. Scientists now report that plants themselves allow bacteria in. The fact that legumes themselves call the shots is a great finding but it also shows the complexity of the challenge to try to transfer the process to non-legumes.

Rhizobial bacteria, tagged to fluoresce green, form an infection thread in a root hair.
Credit: Image courtesy of Norwich BioScience Institutes

A 120-year debate on how nitrogen-fixing bacteria are able to breach the cell walls of legumes has been settled. A paper published on December 19th by John Innes Centre scientists reports that plants themselves allow bacteria in.

Once inside the right cells, these bacteria take nitrogen from the air and supply it to legumes in a form they can use, ammonia. Whether the bacteria breach the cell walls by producing enzymes that degrade it, or the plant does the work for them, has been contested since an 1887 paper in which the importance of the breach was first recognised.

"Our results are so clear we can unequivocally say that the plant supplies enzymes to break down its own cell walls and allow bacteria access," said Professor Allan Downie, lead author from the John Innes Centre, which is strategically funded by BBSRC.

The findings form part of research at JIC to fully understand the symbiosis that enables legumes to be the largest producers of natural nitrogen fertilizer in agriculture. Manufacturing nitrogen fertilisers for non-legume crops uses more fossil fuels than any other agricultural process. Once they have been applied, they release nitrous oxide, a greenhouse gas about 300 times more powerful than carbon dioxide.

Legumes bypass both problems via their symbiosis with rhizobal bacteria from soil. The ultimate aim is to enable non-legumes, and possibly even cereals such as wheat and rice, to develop the symbiosis and source their own nitrogen from the air like legumes.

"The fact that legumes themselves call the shots is a great finding but it also shows the complexity of the challenge to try to transfer the process to non-legumes," said Downie.

Plants give rhizobial bacteria a pass, but only allow a controlled invasion, not access all areas.

A plant cell wall is hard to penetrate, constructed from carbohydrates including pectin. It is like a room with no doors or windows. Rhizobial bacteria signal to the legume that they are there and the plant produces pectate lyase, an enzyme that breaks down pectin and allows rhizobia through one wall.

But this is not an open door for pathogenic bacteria and there are strict controls on entry.

The bacteria induce the plant to build a tunnel through to the next cell wall and the next until the bacteria reach the root where they will reside. As they grow along the tunnel and from wall to wall, they are not allowed beyond the tunnel's confines, ensuring the plant guards itself from them taking advantage. The tunnel also provides a barrier against rogue bacteria getting into plant cells disguised as rhizobia.

When the rhizobia reach the right type of cell, they are allowed to break out of the tunnel. The plant forms nodules on its roots to house the bacteria, from where they convert atmospheric nitrogen for the plant. The plant takes this essential nutrient to the leaves where it promotes growth and photosynthesis.

"There are two major challenges to understanding how plants promote nitrogen fixation," said Downie.

"Firstly, how does the plant make the nodules that contain cells to which the bacteria can be delivered, and secondly how do the bacteria get into these nodule cells?"

The findings published in PNAS contribute to understanding the latter.

"There will be many more hurdles to overcome, but our findings reveal a key step in the development of nitrogen fixation symbioses."


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Xie, J. D. Murray, J. Kim, A. B. Heckmann, A. Edwards, G. E. D. Oldroyd, J. A. Downie. Legume pectate lyase required for root infection by rhizobia. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1113992109

Cite This Page:

Norwich BioScience Institutes. "Legumes give nitrogen-supplying bacteria special access pass." ScienceDaily. ScienceDaily, 19 December 2011. <www.sciencedaily.com/releases/2011/12/111219152514.htm>.
Norwich BioScience Institutes. (2011, December 19). Legumes give nitrogen-supplying bacteria special access pass. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/12/111219152514.htm
Norwich BioScience Institutes. "Legumes give nitrogen-supplying bacteria special access pass." ScienceDaily. www.sciencedaily.com/releases/2011/12/111219152514.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins