Featured Research

from universities, journals, and other organizations

New tool offers unprecedented access for root studies

Date:
December 20, 2011
Source:
Carnegie Institution
Summary:
Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology could revolutionize root research.

Pepper plant roots.
Credit: Scott Bauer

Plant roots are fascinating plant organs -- they not only anchor the plant, but are also the world's most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant's brain.

Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology--developed jointly by Carnegie and Stanford University--could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell.

Understanding roots is crucial to the study of plant physiology because they serve as the interface between a plant and the soil--being solely responsible for taking up water and essential mineral nutrients. Roots must respond quickly to various environmental conditions such as water availability (for example, when being soaked by rain after a period of drought). They must find and exploit nutrients; they must respond to salinization and acidification of the soil; and they must integrate diverse signals such as light and gravity. All of these aspects are very difficult to analyze because of a root's inaccessibility in the soil.

The research team's efforts could revolutionize the entire field of root studies. The team is composed of a group of plant scientists, including the paper's lead author, Guido Grossmann, along with his Carnegie colleagues (Woei-Jiun Guo, David Ehrhardt and Wolf Frommer) and a group of chemical engineers from Stanford University and the Howard Hughes Medical Institute, (Rene Sit, Stephen Quake and Matthias Meier).

The new technology, called the RootChip, allowed the research team to study roots of eight individual seedlings at the same time, and to alter their growth environment simultaneously or independently and with extraordinary precision. Optical sensors, developed and inserted into the root tissue by Frommer's team, allowed the researchers to examine how the roots responded to changes in nutrient supply levels in real time.

"This new tool provides a major advance for studying root biology at the cellular and subcellular level," said Wolf Frommer, director of Carnegie's plant biology department. "The growth conditions can be freely varied over several days, allowing us to monitor actual growth and development of roots and root hairs and using our optical biosensors to study nutrient acquisition and carbon sequestration in real time."

The RootChip was capable of monitoring a root's response to changing levels of the sugar glucose in the surrounding environment. Root growth slowed down when the leaves were not exposed to light, as predicted, because the leaf's photosynthesis is required to supply the energy for root growth. The RootChip also revealed the long-suspected fact that galactose, a sugar highly similar to glucose, is toxic to roots and inhibits their growth and function.

The RootChip is a generic tool and can be altered to test any aspect of root physiology that can be analyzed visually. It can easily be modified to study more than 30 seedlings at the same time and can be expanded for use with plants used to make biofuels, such as Brachypodium and foxtail millet.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guido Grossmann, Woei-Jiun Guo, David W. Ehrhardt, Wolf B. Frommer, Rene V. Sit, Stephen R. Quake, and Matthias Meier. The RootChip: An Integrated Microfluidic Chip for Plant Science. The Plant Cell, December 20, 2011 DOI: 10.1105/tpc.111.092577

Cite This Page:

Carnegie Institution. "New tool offers unprecedented access for root studies." ScienceDaily. ScienceDaily, 20 December 2011. <www.sciencedaily.com/releases/2011/12/111220172634.htm>.
Carnegie Institution. (2011, December 20). New tool offers unprecedented access for root studies. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/12/111220172634.htm
Carnegie Institution. "New tool offers unprecedented access for root studies." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220172634.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins