Featured Research

from universities, journals, and other organizations

To turn up the heat in chilies, just add water

Date:
December 21, 2011
Source:
University of Washington
Summary:
Hot chilies growing wild in dry environments produce substantially fewer seeds than non-pungent plants, but they are better protected against a seed-attacking fungus that is more prevalent in moist regions.

Researcher Leslie McGinnis peers through a "forest" of chili plants being grown in the UW Botany Greenhouse.
Credit: Haley Morris

Biologists have learned in recent years that wild chilies develop their trademark pungency, or heat, as a defense against a fungus that could destroy their seeds. But that doesn't explain why some chilies are hot and others are not.

New research provides an answer: Hot chilies growing in dry areas need more water to produce as many seeds as non-pungent plants, but the Fusarium fungus is less of a threat in dryer environments so chilies in those areas are less likely to turn up the heat. In wetter regions, where Fusarium thrives, wild chilies build up their reserves of spicy capsaicin in self-defense.

"Despite the reduced benefit of pungency in dry environments, hot plants still occur there, as does the deadly fungus. That suggests that the greater presence of non-pungent plants that produce substantially more seeds is the result of a fitness-based tradeoff," said David Haak, lead author of a paper describing the research published Dec. 21 in Proceedings of the Royal Society B. The Royal Society is the United Kingdom's academy of science.

Haak, a post-doctoral researcher at Indiana University, conducted the research as part of his doctoral work at the University of Washington. Co-authors of the paper are Leslie McGinnis of the University of Michigan, who did the work while a UW undergraduate; Douglas Levey of the University of Florida and Joshua Tewksbury, a UW biology professor who leads the research group.

The scientists examined pungency differences by comparing the proportion of pungent plants with that of non-pungent plants in 12 populations of wild chilies in southeastern Bolivia along a 185-mile line that gradually progressed from a relatively dry region to a wetter region. They conducted plant censuses in focal populations five times between 2002 and 2009, and tagged plants in each census so they could determine new seedlings the next time.

They found that, starting in the dryer northeast part of the section, 15 to 20 percent of the plants had pungent fruit, and pungency increased along the line toward the wetter southwest, where they never found a single plant that did not produce pungent fruit.

They also selected three populations of chili plants that each produced both pungent and non-pungent fruit and spanned the range of rainfall and pungency differences. They then grew seeds from those plants in the UW Botany Greenhouse to examine what affect water availability had on pungency.

The 330 plants that resulted from those seeds were grown under identical conditions until they reached their first flowering, then were separated into two groups -- one that received plenty of water and one that was stressed by receiving only the amount of water available to plants in the driest area of Bolivia from which seeds were taken.

The scientists found that under water-stressed conditions, non-pungent plants produced twice as many seeds as pungent plants. That suggests the pungent plants trade some level of fitness for protection from the Fusarium fungus, Haak said.

The researchers determined the pungent plants have developed a reduced efficiency in water use, so in dryer areas they produce fewer seeds and are more limited in reproduction. In wetter areas, non-pungent plants are at a reproductive disadvantage because they are much more likely to have their seeds attacked by the fungus.

"It surprised us to find that the tradeoff to produce capsaicin in pungent plants would involve this major physiological process of water-use efficiency," Haak said.

He noted that over the entire range, 90 to 95 percent of the chili fruits had some level of fungal infection, and pungent plants were better able to defend themselves.

The research was funded by grants from the National Science Foundation; the National Geographic Society; Sigma Xi, the scientific research society; and the UW Department of Biology.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Vince Stricherz. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. C. Haak, L. A. McGinnis, D. J. Levey, J. J. Tewksbury. Why are not all chilies hot? A trade-off limits pungency. Proceedings of the Royal Society B: Biological Sciences, 2011; DOI: 10.1098/rspb.2011.2091

Cite This Page:

University of Washington. "To turn up the heat in chilies, just add water." ScienceDaily. ScienceDaily, 21 December 2011. <www.sciencedaily.com/releases/2011/12/111221091924.htm>.
University of Washington. (2011, December 21). To turn up the heat in chilies, just add water. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/12/111221091924.htm
University of Washington. "To turn up the heat in chilies, just add water." ScienceDaily. www.sciencedaily.com/releases/2011/12/111221091924.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins