Featured Research

from universities, journals, and other organizations

Sea cucumbers: Dissolving coral reefs?

Date:
December 22, 2011
Source:
Carnegie Institution
Summary:
Coral reefs are extremely diverse ecosystems that support enormous biodiversity. But they are at risk. Carbon dioxide emissions are acidifying the ocean, threatening reefs and other marine organisms. New research analyzed the role of sea cucumbers in portions of the Great Barrier Reef and determined that their dietary process of dissolving calcium carbonate (CaCO3) from the surrounding reef accounts for about half of at the total nighttime dissolution for the reef.

Sea cucumber Stichopus herrmanni in an aquarium.
Credit: Photo by Dr. Aya Schneider Mor.

Coral reefs are extremely diverse ecosystems that support enormous biodiversity. But they are at risk. Carbon dioxide emissions are acidifying the ocean, threatening reefs and other marine organisms. New research led by Carnegie's Kenneth Schneider analyzed the role of sea cucumbers in portions of the Great Barrier Reef and determined that their dietary process of dissolving calcium carbonate (CaCO3) from the surrounding reef accounts for about half of at the total nighttime dissolution for the reef.

The work is published December 23 by the Journal of Geophysical Research.

Reefs are formed through the biological deposition of calcium carbonate (CaCO3). Many of the marine organisms living on and around a reef contribute to either its destruction or construction. Therefore it is crucial that the amount of calcium carbonate remain in balance. When this delicate balance is disrupted, the reef ceases to grow and its foundations can be weakened.

In order to fully understand a reef's ability to deposit carbonate and grow, it is necessary to understand the roles that the various elements of sea life play in this process. This is especially important because increased atmospheric carbon dioxide is predicted to decrease the amount of carbonate available due to acidification.

The research group set out to examine the role that sea cucumbers play in the reef environment.

Schneider's team included Carnegie's Ken Caldeira, as well as Jacob Silverman, of the Israeli Limnology and Oceanography Institute; Maria Byrne and Erika Woolsey, both of the University of Sydney and the latter also from James Cook University; and Hampus Eriksson of Stockholm University.

They studied the growth and dissolution of One Tree Reef, which surrounds One Tree Island in Australia's Great Barrier Reef. Focusing on an area of the reef known as "DK13," they found that sea cucumbers were abundant. They collected some of these sea cucumbers and placed them in aquaria to study the effect on sea water resulting from the sand and rubble transported through their gut system as part of their digestive process.

As part of another ongoing study in this area, the team found that the coral reef was dissolving at night. They found that sea cucumbers play a crucial part in this process. They live off the bits of organic matter in the carbonate sand and rubble that they ingest; in this process, their digestive systems produce acids that dissolve parts of these carbonate minerals. The dissolved carbonate minerals are then released into the surrounding environment. The researchers found that these lowly organisms might be responsible for half of the CaCO3 of the reef observed at night.

The burning of coal, oil, and gas releases CO2 into the atmosphere, which is later absorbed by the ocean, causing the ocean to acidify. Ocean acidification is expected to slow reef growth. With slower reef growth, the dissolution of CaCO3 within the guts of sea cucumbers is expected to become even more important to the reef CaCO3 budget.

"Even though the sea cucumbers dissolve CaCO3 on the reef, in a lagoon such as the one at One Tree Reef, where there is limited seawater exchange with the surrounding ocean, they can be important in recycling of nutrients to support primary productivity. They also increase sea water buffer capacity to partially offset ocean acidification effects, helping to maintain the overall health of the coral reef," Schneider said. "Although sea cucumbers may play a part in reef dissolution, they are also an important part of an incredible marine environment."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kenneth Schneider, Jacob Silverman, Erika Woolsey, Hampus Eriksson, Maria Byrne, Ken Caldeira. Potential influence of sea cucumbers on coral reef CaCO3 budget: A case study at One Tree Reef. Journal of Geophysical Research, 2011; 116 (G4) DOI: 10.1029/2011JG001755

Cite This Page:

Carnegie Institution. "Sea cucumbers: Dissolving coral reefs?." ScienceDaily. ScienceDaily, 22 December 2011. <www.sciencedaily.com/releases/2011/12/111222152018.htm>.
Carnegie Institution. (2011, December 22). Sea cucumbers: Dissolving coral reefs?. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/12/111222152018.htm
Carnegie Institution. "Sea cucumbers: Dissolving coral reefs?." ScienceDaily. www.sciencedaily.com/releases/2011/12/111222152018.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins