Featured Research

from universities, journals, and other organizations

Graphene gives protection from intense laser pulses

Date:
January 3, 2012
Source:
National University of Singapore
Summary:
Single-sheet graphene dispersion when substantially spaced apart in liquid cells or solid film matrices can exhibit novel excited state absorption mechanism that can provide highly effective broadband optical limiting well below the onset of microbubble or microplasma formation.

The new optical-induced absorption mechanisms [a] Photoexcitation of a dispersed graphene single sheet gives long-lived electron-hole pairs. Further excitation causes the appearance of localized states such as (i) excitons (neutral excited state) or (ii) polarons (charged excited state) due to interactions. [b] For comparison, graphite gives on electron-hole gas that is very short-lived due to fast cooling and re-combination.
Credit: National University of Singapore

Scientists at the National University of Singapore (NUS) , DSO National Laboratories and University of Cambridge have jointly announced a new world record in broadband non-linear optical absorption behavior using single-sheet graphene dispersions in a variety of heavy-atom solvents and film matrices.

Related Articles


Graphenes are single sheets of carbon atoms bonded into a hexagonal array. In nature, they tend to stack to give graphite. In this breakthrough, the scientists have developed a way to prevent the restacking of these sheets by attaching alkyl surface chains to them, while retaining the integrity of the nano-graphene pockets on the sheets. This makes a solution-processable material that can be dispersed into solvents and also into film matrices. As a consequence, the scientists observed a new phenomenon. They found that the dispersed graphenes exhibit a giant nonlinear optical-absorption response to intense nanosecond laser pulses over a wide spectral range with a threshold that is much lower than found in any material.

This sets a new world record in energy limiting onset of 10 mJ/cm^2 for a linear transmittance of 70%.

These materials can now be used for protection of sensitive sensors and devices from laser damage, and for optical circuits.

"We found from ultrafast spectroscopy measurements that dispersed graphene sheets switch their behavior from induced optical transparency which has been well known, to induced optical absorption depending on its environment. This is a remarkable finding that shows graphene can still surprise!" says Prof Lay-Lay Chua, principal investigator of the ONDL graphene team at NUS.

"This is an important first step in the development of practical graphene nanocomposite films for applications where the graphene sheets remain fully dispersed. The induced change in their nonlinear optical behavior is amazing and highly practical!" says Prof Geok-Kieng Lim, principal investigator of the DSO graphene team. Prof Geok-Kieng Lim is also an adjunct professor at the Department of Physics, NUS.

The work at University of Cambridge was performed at the Cavendish Laboratory in the group of Prof Sir Richard Friend, who is also the Tan Chin Tuan Foundation Centennial Professor of NUS. The work in Singapore is supported by the Temasek Young Investigator's Award, NUS-DSO Project Agreement and Ministry of Education.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Geok-Kieng Lim, Zhi-Li Chen, Jenny Clark, Roland G. S. Goh, Wee-Hao Ng, Hong-Wee Tan, Richard H. Friend, Peter K. H. Ho, Lay-Lay Chua. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 2011; 5 (9): 554 DOI: 10.1038/nphoton.2011.177

Cite This Page:

National University of Singapore. "Graphene gives protection from intense laser pulses." ScienceDaily. ScienceDaily, 3 January 2012. <www.sciencedaily.com/releases/2011/12/111230134831.htm>.
National University of Singapore. (2012, January 3). Graphene gives protection from intense laser pulses. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2011/12/111230134831.htm
National University of Singapore. "Graphene gives protection from intense laser pulses." ScienceDaily. www.sciencedaily.com/releases/2011/12/111230134831.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins