Featured Research

from universities, journals, and other organizations

Paddlefish sensors tuned to detect signals from zooplankton prey

Date:
January 12, 2012
Source:
American Institute of Physics
Summary:
Neurons fire in a synchronized bursting pattern in response to robust signals indicating nearby food.

In 1997, scientists at the Center for Neurodynamics at the University of Missouri - St. Louis demonstrated that special sensors covering the elongated snout of paddlefish are electroreceptors that help the fish detect prey by responding to the weak voltage gradients that swimming zooplankton create in the surrounding water.

Related Articles


Now some of the same researchers have found that the electroreceptors contain oscillators, which generaterhythmical firing of electrosensory neurons. The oscillators allow the electroreceptors to create a dynamical codeto most effectively respond to electrical signals emitted naturally by zooplankton.

The results are presented in a paper appearing in the AIP’s journal Chaos.

To test the response of paddlefish electroreceptors to different stimuli, the researchers recorded signals from electrosensory neurons of live fish, while applying weak electric fields to the water in the form of computer-generated artificial stimuli or signals obtained previously from swimming zooplankton.

The team then analyzed the power contained in different frequency ranges for the noisy input signals and the corresponding electroreceptor responses, and compared the two. In addition to finding that the paddlefish sensors best encode the signals emitted by zooplankton, the team also found that as the strength of the input signal was raised, the firing of the fish’s sensory neurons transitioned from a steady beat to a noisy pattern of intermittent bursts. This bursting pattern became synchronized across different groups of electroreceptors, increasing the likelihood of the signal reaching higher-order neurons.

This provides a plausible mechanism to explain how reliable information about the nearness of prey is transferred to the fish’s brain, the researchers write.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander B. Neiman and David F. Russell. Sensory Coding in Oscillatory Electroreceptors of Paddlefish. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012

Cite This Page:

American Institute of Physics. "Paddlefish sensors tuned to detect signals from zooplankton prey." ScienceDaily. ScienceDaily, 12 January 2012. <www.sciencedaily.com/releases/2012/01/120105145841.htm>.
American Institute of Physics. (2012, January 12). Paddlefish sensors tuned to detect signals from zooplankton prey. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2012/01/120105145841.htm
American Institute of Physics. "Paddlefish sensors tuned to detect signals from zooplankton prey." ScienceDaily. www.sciencedaily.com/releases/2012/01/120105145841.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brawling Pandas Are Violently Adorable

Brawling Pandas Are Violently Adorable

Buzz60 (Jan. 29, 2015) Video of pandas play fighting at the Chengdu Research Base in China will make your day. Mara Montalbano (@maramontalbano) shows us. Video provided by Buzz60
Powered by NewsLook.com
Why Researchers Say We Should Cut Back On Biofuels

Why Researchers Say We Should Cut Back On Biofuels

Newsy (Jan. 29, 2015) Biofuels aren&apos;t the best alternative to fossil fuels, according to a new report. In fact, they&apos;re quite a bad one. Video provided by Newsy
Powered by NewsLook.com
3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

3-D Printed Wheelchair Helps Two-Legged Dog Learn to Run

Buzz60 (Jan. 29, 2015) 3-D printing helps another two-legged dog run around with his four-legged friends. Jen Markham (@jenmarkham) has the adorable video. Video provided by Buzz60
Powered by NewsLook.com
Dogs Bring on So Many Different Emotions in Their Human Best Friends

Dogs Bring on So Many Different Emotions in Their Human Best Friends

RightThisMinute (Jan. 28, 2015) From new-puppy happy tears to helpful-grocery-carrying-dog laughter, our four-legged best friends can make us feel the entire spectrum of emotions. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins