Featured Research

from universities, journals, and other organizations

Paddlefish sensors tuned to detect signals from zooplankton prey

Date:
January 12, 2012
Source:
American Institute of Physics
Summary:
Neurons fire in a synchronized bursting pattern in response to robust signals indicating nearby food.

In 1997, scientists at the Center for Neurodynamics at the University of Missouri - St. Louis demonstrated that special sensors covering the elongated snout of paddlefish are electroreceptors that help the fish detect prey by responding to the weak voltage gradients that swimming zooplankton create in the surrounding water.

Related Articles


Now some of the same researchers have found that the electroreceptors contain oscillators, which generaterhythmical firing of electrosensory neurons. The oscillators allow the electroreceptors to create a dynamical codeto most effectively respond to electrical signals emitted naturally by zooplankton.

The results are presented in a paper appearing in the AIP’s journal Chaos.

To test the response of paddlefish electroreceptors to different stimuli, the researchers recorded signals from electrosensory neurons of live fish, while applying weak electric fields to the water in the form of computer-generated artificial stimuli or signals obtained previously from swimming zooplankton.

The team then analyzed the power contained in different frequency ranges for the noisy input signals and the corresponding electroreceptor responses, and compared the two. In addition to finding that the paddlefish sensors best encode the signals emitted by zooplankton, the team also found that as the strength of the input signal was raised, the firing of the fish’s sensory neurons transitioned from a steady beat to a noisy pattern of intermittent bursts. This bursting pattern became synchronized across different groups of electroreceptors, increasing the likelihood of the signal reaching higher-order neurons.

This provides a plausible mechanism to explain how reliable information about the nearness of prey is transferred to the fish’s brain, the researchers write.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander B. Neiman and David F. Russell. Sensory Coding in Oscillatory Electroreceptors of Paddlefish. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012

Cite This Page:

American Institute of Physics. "Paddlefish sensors tuned to detect signals from zooplankton prey." ScienceDaily. ScienceDaily, 12 January 2012. <www.sciencedaily.com/releases/2012/01/120105145841.htm>.
American Institute of Physics. (2012, January 12). Paddlefish sensors tuned to detect signals from zooplankton prey. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/01/120105145841.htm
American Institute of Physics. "Paddlefish sensors tuned to detect signals from zooplankton prey." ScienceDaily. www.sciencedaily.com/releases/2012/01/120105145841.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com
Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com
New Hormone Could Protect Against Diabetes And Weight Gain

New Hormone Could Protect Against Diabetes And Weight Gain

Newsy (Mar. 4, 2015) A newly discovered hormone mimics the effects of exercise, protecting against diabetes and weight gain. Video provided by Newsy
Powered by NewsLook.com
Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Reuters - Entertainment Video Online (Mar. 4, 2015) Britain&apos;s Prince William pledges to unite against illegal wildlife trade on the final day of his visit to China. Rough cut - no reporter narration Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins