Featured Research

from universities, journals, and other organizations

Researchers locate protein that could 'turn off' deadly disease carrier

Date:
January 12, 2012
Source:
Boston College
Summary:
Genome sequencing leads to the identification of a protein crucial to the work of two parasites as they spread a pair of deadly diseases, toxoplasmosis and malaria.

Toxoplasma gondii in mouse ascitic fluid.
Credit: Credit: DPDx, CDC

Researchers from Boston College have discovered a protein that plays a pivotal role in the progression of the deadly diseases toxoplasmosis and malaria and shown that its function could be genetically blocked in order to halt the progress of the parasite-borne illnesses, the team reports in the current edition of the journal Science.

The protein, identified as DOC2.1, plays a similar role in the secretion of microneme organelles that are crucial to the mobility of the parasitic protozoa Toxoplasma gondii, which causes toxoplasmosis, and Plasmodium falciparum, which causes malaria, report Marc-Jan Gubbels and Gabor Marth, both professors of biology at Boston College.

The researchers say the discovery could lead to the development of drugs that target the protein in order to block the mechanism that advances the two diseases.

"The mechanism of microneme secretion, which is required for host cell invasion, is a valid drug target," said Gubbels. "Since neither microneme secretion nor invasion itself are currently targeted by any anti-malaria drugs, a potentially new class of anti-malaria reagents can be developed. The high incidence of drug resistance against malaria is a big problem, so new drugs are urgently needed."

Gubbels said researchers in his lab obtained a temperature-sensitive mutant of Toxoplasma gondii, which displayed a mobility defect preventing it from host cell invasion. Marth, a computational biologist, sequenced the parasite's genome and identified 33 possible sites in the genome responsible for the defect. Lab work isolated a single mutation in the DOC2.1 gene that was associated with a microneme secretion defect responsible for the mobility defect.

Co-author Manoj Duraisingh, of the Harvard School of Public Health, generated a Plasmodium mutant wherein DOC2.1 expression could be shut off and demonstrated the protein was also crucial to microneme secretion in the parasite that causes malaria.

Gubbels said the findings reinforce the dramatic advances made possible by complete genome sequencing and computational biology, which are Marth's areas of expertise. These approaches bypass the need for the difficult and time-consuming task of mapping causative mutations by genetic crosses as used in model organisms.

"The re-sequencing method will permit the study of eukaryotic pathogens by forward genetics, which has shown its power in studies of model organisms, such as yeast and fruit flies," said Gubbels. "To date, many of these pathogens have limited experimental and genetic accessibility, but this roadblock can now be lifted."

Added Marth, "We are now working with a number of research teams to gain insight into other critical pathogenic pathways, and already see promising initial results."


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Farrell, S. Thirugnanam, A. Lorestani, J. D. Dvorin, K. P. Eidell, D. J. P. Ferguson, B. R. Anderson-White, M. T. Duraisingh, G. T. Marth, M.-J. Gubbels. A DOC2 Protein Identified by Mutational Profiling Is Essential for Apicomplexan Parasite Exocytosis. Science, 2012; 335 (6065): 218 DOI: 10.1126/science.1210829

Cite This Page:

Boston College. "Researchers locate protein that could 'turn off' deadly disease carrier." ScienceDaily. ScienceDaily, 12 January 2012. <www.sciencedaily.com/releases/2012/01/120112142224.htm>.
Boston College. (2012, January 12). Researchers locate protein that could 'turn off' deadly disease carrier. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/01/120112142224.htm
Boston College. "Researchers locate protein that could 'turn off' deadly disease carrier." ScienceDaily. www.sciencedaily.com/releases/2012/01/120112142224.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins