Featured Research

from universities, journals, and other organizations

Neutron scattering provides window into surface interactions

Date:
January 17, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
To better understand the fundamental behavior of molecules at surfaces, researchers are combining the powers of neutron scattering with chemical analysis.

ORNL researchers studied the molecular surface dynamics of an interior pore surface and observed that molecules tend to reside near the surface, as illustrated here.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

To better understand the fundamental behavior of molecules at surfaces, researchers at the U.S. Department of Energy's Oak Ridge National Laboratory are combining the powers of neutron scattering with chemical analysis.

Scientists have a fundamental interest in how molecules behave at solid surfaces because surface interactions influence chemistry, such as in materials for catalysis, drug delivery and carbon sequestration. Understanding these interactions allows researchers to tailor materials for a specific desirable outcome.

Michelle Kidder and A.C. Buchanan, physical organic chemists, and Ken Herwig, neutron scattering scientist, used neutron scattering to study the physical motion of a chemically attached organic molecule inside a silica nanopore, MCM41.

"There is a connection between a molecule's dynamic behavior or motion to its surroundings." Herwig said. "In particular, restricting the ability of a molecule to freely move by confining it to a small volume dramatically affects both the range and character of its movement. We are trying to gain insight into the connection between the changes in molecular motion and the changes in chemistry that occur when molecules are attached to a solid surface."

Herwig used neutron scattering to gain a unique perspective into molecular motion because neutrons are sensitive to the hydrogen atoms, which are present in many molecules that researchers are interested in. Additionally, neutron scattering simultaneously tells researchers how rapid the motion is and what type of motion they are observing on the atomic and nanoscale.

If scientists understand how pore size affects surface interactions, they can modify pore size to change a chemical product outcome.

To study surface interactions, Kidder synthesized both the organic molecules and MCM41 of different pore sizes, then chemically attached the molecules to the silica pore surface, which forms an organic-inorganic hybrid material. This hybrid material is used in studies to understand chemical decomposition pathways, where surface interactions were presumed to play a role.

"We are interested in understanding the thermo decomposition of molecules similar to those found in biomass resources," Kidder said. "What we have seen is that there are many local environmental factors that influence chemical reactivity and products, and one of those large influences occurs when a molecule is confined to a pore wall, where even the pore size has a large impact on reactivity."

This research was funded by DOE's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Edward J. Kintzel, Michelle K. Kidder, A. C. Buchanan, Phillip F. Britt, Eugene Mamontov, Michaela Zamponi, Kenneth W. Herwig. Dynamics of 1,3-Diphenylpropane Tethered to the Interior Pore Surfaces of MCM-41. The Journal of Physical Chemistry C, 2012; 116 (1): 923 DOI: 10.1021/jp209458a

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutron scattering provides window into surface interactions." ScienceDaily. ScienceDaily, 17 January 2012. <www.sciencedaily.com/releases/2012/01/120117161543.htm>.
DOE/Oak Ridge National Laboratory. (2012, January 17). Neutron scattering provides window into surface interactions. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/01/120117161543.htm
DOE/Oak Ridge National Laboratory. "Neutron scattering provides window into surface interactions." ScienceDaily. www.sciencedaily.com/releases/2012/01/120117161543.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins