Featured Research

from universities, journals, and other organizations

Controlling molecular self-assembly via different pathways

Date:
January 19, 2012
Source:
Eindhoven University of Technology
Summary:
Researchers have succeeded in monitoring and controlling a molecular self-assembly process via different pathways. While it was formerly thought that the molecules form the right structure by themselves, this research shows that the assembly process can follow different pathways yielding different structures; in this case polymer chains with left- and right-handed helical directions. This new knowledge is of great importance for the understanding of supramolecular polymers, in which small differences in the way the molecular building blocks are organized can have a large influence on the properties of the resulting material.

Researchers Peter Korevaar (left) and Tom de Greef. The blue ‘winding stairs’ represent the spiral aggregates of which the self-assembly process is described in Nature. The little flasks contain a solution of SOPV molecules.
Credit: Bart van Overbeeke

Researchers at Eindhoven University of Technology (TU/e) have succeeded in monitoring and controlling a molecular self-assembly process via different pathways. While it was formerly thought that the molecules form the right structure by themselves, this research shows that the assembly process can follow different pathways yielding different structures; in this case polymer chains with left- and right-handed helical directions. This new knowledge is of great importance for the understanding of supramolecular polymers, in which small differences in the way the molecular building blocks are organized can have a large influence on the properties of the resulting material.

Related Articles


The results were recently published online by Nature.

Molecular self-assembly is the process through which molecular building blocks organize themselves into supramolecular structures. This occurs frequently in nature, for example in the formation of cell membranes. Controlling the principles of molecular self-assembly opens the way to totally new materials with special properties, for example self-repairing coatings. The properties of these materials are strongly influenced by the way the building blocks are assembled; a small difference in their organization can lead to very different properties. This makes an in depth understanding of the assembly process, and the ability to manipulate it in subtle ways, very important.

In their experiments, Korevaar and his fellow researchers use a molecular building block that can be studied in detail using spectroscopy: S-chiral oligo(p-phenylenevinylene) or SOPV. Molecules of this kind are frequently used in organic electronic devices, in which small differences in the morphology of the material lead to large differences in their properties. At the start of the assembly process SOPV first forms unstructured clusters, which subsequently grow into neatly organized left-handed 'spiral staircase' like helical structures.

Up to now it was assumed that the self-assembly of a molecule can lead to only one single end-product, and that the intermediate process steps are not important and take place too rapidly to even allow them to be studied. This now appears to be incorrect: in fact the intermediate process steps are very important, and lead to different variants. For example if the assembly process of SOPV takes place rapidly, 'spiral staircase' structures with opposite helical direction are formed. Temporary addition of tartaric acid, a small molecule that attaches itself to the SOPV molecules, forces the assembly process completely towards this alternative form. Detailed studies show that the two different helical structures compete for the available molecules as building blocks. "This knowledge has significant impact on an optimal self-assembly process, and we can now use it for more applied supramolecular systems which are much more difficult to study," says Peter Korevaar, first author of the Nature-publication.

Korevaar is carrying out his research at the Institute for Complex Molecular Systems (ICMS) at TU/e. The ICMS is an institute that brings together excellent researchers from a range of disciplines to address the question: how far can we push chemical self-assembly?


Story Source:

The above story is based on materials provided by Eindhoven University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter A. Korevaar, Subi J. George, Albert J. Markvoort, Maarten M. J. Smulders, Peter A. J. Hilbers, Albert P. H. J. Schenning, Tom F. A. De Greef, E. W. Meijer. Pathway complexity in supramolecular polymerization. Nature, 2012; 481 (7382): 492 DOI: 10.1038/nature10720

Cite This Page:

Eindhoven University of Technology. "Controlling molecular self-assembly via different pathways." ScienceDaily. ScienceDaily, 19 January 2012. <www.sciencedaily.com/releases/2012/01/120119101547.htm>.
Eindhoven University of Technology. (2012, January 19). Controlling molecular self-assembly via different pathways. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/01/120119101547.htm
Eindhoven University of Technology. "Controlling molecular self-assembly via different pathways." ScienceDaily. www.sciencedaily.com/releases/2012/01/120119101547.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins