Featured Research

from universities, journals, and other organizations

Crystallizing the future of oxide materials

Date:
January 24, 2012
Source:
University of Arkansas, Fayetteville
Summary:
Researchers have examined the challenges facing scientists building the next generation of materials and innovative electronic devices and identified opportunities for taking the rational material design in new directions.

University of Arkansas physicist Jak Chakhalian.
Credit: Photo by Russell Cothren

A University of Arkansas physicist and his colleagues have examined the challenges facing scientists building the next generation of materials and innovative electronic devices and identified opportunities for taking the rational material design in new directions.

Jak Chakhalian of the University of Arkansas, A.J. Millis of Columbia University and J. Rondinelli of Drexel University present their ideas in the current issue of Nature. "Where you see issues, there are opportunities," Chakhalian said.

The researchers focus on complex oxide interfaces with strongly correlated electrons, which are artificially created structures involving materials called transition metal oxides. Oxide interfaces have the potential to revolutionize materials and devices based on them the way that semiconductors once did, but researchers find themselves hampered by several obstacles.

First, no one has developed a comprehensive theory of why oxide interfaces behave as they do, which means that scientists cannot predict or often even explain the materials' properties. Second, scientists face challenges in synthesizing these complex materials with atomic precision. Synthesizing involves taking several chemical elements balanced very precisely and combining them into intricate geometrical arrangements. On top of this, to create interfaces, scientists must grow these very dissimilar materials together.

While these challenges may seem intimidating, Chakhalian and his colleagues see two opportunities. The first is to grow materials in unusual directions. Chakhalian has already demonstrated that an oxide interface grown along the diagonal of a cube will crystalize into triangular and hexagonal atomic patterns, while the same material grown on a conventional "horizontal" surface will have a common cubic pattern.

"When grown along the diagonal, from the mechanical, electronic and magnetic properties point of view it becomes a new, exotic material," he said. By forcing materials to grow in directions that they would usually resist in nature, Chakhalian suggests a way to find these novel exotic materials.

The second opportunity involves creating interfaces between oxide materials and materials where oxygen is replaced by another element, which leads to entirely new materials with novel electronic properties. For instance, nickel oxide is an insulator but nickel sulfide is metallic. By alternating an oxide-based layer with a non-oxide based layer, scientists propose creating interfaces with important properties for, among other things, energy savings and water purification.

"If you want to talk about the next nanoelectronics revolution or real solutions to the energy problem, these are some of the groundbreaking directions we propose to take," Chakhalian said.

Chakhalian is the Charles and Clydene Scharlau Professor of Physics in the J. William Fulbright College of Arts and Sciences.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Chakhalian, A. J. Millis, J. Rondinelli. Whither the oxide interface. Nature Materials, 2012; 11 (2): 92 DOI: 10.1038/nmat3225

Cite This Page:

University of Arkansas, Fayetteville. "Crystallizing the future of oxide materials." ScienceDaily. ScienceDaily, 24 January 2012. <www.sciencedaily.com/releases/2012/01/120124183752.htm>.
University of Arkansas, Fayetteville. (2012, January 24). Crystallizing the future of oxide materials. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/01/120124183752.htm
University of Arkansas, Fayetteville. "Crystallizing the future of oxide materials." ScienceDaily. www.sciencedaily.com/releases/2012/01/120124183752.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins