Featured Research

from universities, journals, and other organizations

Researchers discover method to unravel malaria's genetic secrets

Date:
January 25, 2012
Source:
National Jewish Health
Summary:
Researchers have devised a technique to overcome a genetic oddity of Plasmodium falciparum, the major cause of human malaria, which has stymied research into the organism's genes. The technique opens the door to genetic discovery for the entire organism, which should foster a greater understanding of the parasite, and facilitate discovery of new medications for a disease that infects 200 million people and kills nearly 700,000 every year.

The parasite that causes malaria is a genetic outlier, which has prevented scientists from discovering the functions of most of its genes. Researchers at National Jewish Health and Yale University School of Medicine have devised a technique to overcome the genetic oddity of Plasmodium falciparum, the major cause of human malaria.

Related Articles


This new approach led them discover a new gene involved in lipid synthesis, and opens the door to further genetic discovery for the entire organism. This should foster a much greater understanding of the parasite, and facilitate discovery of new medications for a disease that infects more than 200 million people and kills nearly 700,000 every year.

"The malarial genome has been a black box. Our technique allows us to open that box, so that we can learn what genes in the most lethal human parasite actually do," said Dennis Voelker, PhD, Professor of Medicine at National Jewish Health and senior author on the paper that appeared in the January 2, 2012 , issue of the Journal of Biological Chemistry. "This could prove tremendously valuable in the fight against a disease that has become increasingly drug-resistant."

The genome of P. falciparum was sequenced in 2002, but the actual functions of many of the organism's genes have remained elusive. One of the primary methods for discovering gene function is to copy a specific gene, insert it into a model organism that is easy to grow, often the yeast Saccharomyces cerevisiae, then draw on the incredible knowledge base about yeast and its abundant genetic variants to discover how that inserted gene changes the organism's biology.

DNA is composed of building blocks with the shorthand designations A,T,C and G. The genome of P. falciparum is odd because it is particularly rich in A's and T's. Because of this A-T-rich nature, P. falciparum genes generally do not function when they are inserted into other organisms. As a result, scientists have been largely stymied when trying to understand the functions of P. falciparum's genes.

It turns out, however, that P. falciparum has a close cousin, P. knowlesi, which shares almost all its genes with P. falciparum, but with fewer A's and T's. As a result, P. knowlesi genes function well when inserted into yeast. Scientists can now insert P knowlesi genes into yeast, discover their function, and then match them to corresponding genes in P. falciparum, which reveals the function of the malarial parasite's genes.

"This technique could lead to an explosion in knowledge about malaria and the parasite that causes it." said Dr. Voelker.

The researchers used the technique to discover a new gene involved in the synthesis of lipids in cell membranes of P. falciparum. The gene, phosphatidylserine decarboxylase, directs the formation of a protein unique to malarial parasites and is a potential therapeutic target. For example, selective disruption of lipid synthesis in P. falciparum, would prevent the organism from making new cell membranes, growing and reproducing in human hosts.


Story Source:

The above story is based on materials provided by National Jewish Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.-Y. Choi, Y. Augagneur, C. B. Mamoun, D. R. Voelker. Identification of Gene Encoding Plasmodium knowlesi Phosphatidylserine Decarboxylase by Genetic Complementation in Yeast and Characterization of in Vitro Maturation of Encoded Enzyme. Journal of Biological Chemistry, 2011; 287 (1): 222 DOI: 10.1074/jbc.M111.313676

Cite This Page:

National Jewish Health. "Researchers discover method to unravel malaria's genetic secrets." ScienceDaily. ScienceDaily, 25 January 2012. <www.sciencedaily.com/releases/2012/01/120125113151.htm>.
National Jewish Health. (2012, January 25). Researchers discover method to unravel malaria's genetic secrets. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2012/01/120125113151.htm
National Jewish Health. "Researchers discover method to unravel malaria's genetic secrets." ScienceDaily. www.sciencedaily.com/releases/2012/01/120125113151.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com
GlaxoSmithKline and Novartis Try Swapping Success

GlaxoSmithKline and Novartis Try Swapping Success

Reuters - Business Video Online (Mar. 2, 2015) GlaxoSmithKline and Novartis have completed a series of asset swaps worth more than $20 billion. As Grace Pascoe reports they say the deal will reshape both drugmakers. Video provided by Reuters
Powered by NewsLook.com
How Can West Africa Rebuild After Ebola?

How Can West Africa Rebuild After Ebola?

Reuters - Business Video Online (Mar. 2, 2015) How best to rebuild the three West African countries struggling with Ebola will be discussed in Brussels this week. As Hayley Platt reports Sierra Leone has the toughest job ahead - its once thriving economy has been ravaged by the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins